Exploring Influencing Factors for Differences in Integral and Complete Urban Surface Temperatures

Jiashuo Li;Xiujuan Dai;Dandan Wang;Yunhao Chen;Zhenyuan Zhu
{"title":"Exploring Influencing Factors for Differences in Integral and Complete Urban Surface Temperatures","authors":"Jiashuo Li;Xiujuan Dai;Dandan Wang;Yunhao Chen;Zhenyuan Zhu","doi":"10.1109/LGRS.2025.3559323","DOIUrl":null,"url":null,"abstract":"Complete urban surface temperature (UST) (<inline-formula> <tex-math>$T_{\\textrm {c}}$ </tex-math></inline-formula>) takes into account the total active surface areas and is used to estimate the surface temperature over a 3-D rough surface such as cities. Direct calculations of <inline-formula> <tex-math>$T_{\\textrm {c}}$ </tex-math></inline-formula> require temperatures of each surface of the urban canopy, which are hard to obtain in actual remote sensing observations. Moreover, solid-angle integral temperature (<inline-formula> <tex-math>$T_{\\text {SI}}$ </tex-math></inline-formula>) calculated using multiangle remote sensing observations has great potential for approaching <inline-formula> <tex-math>$T_{\\textrm {c}}$ </tex-math></inline-formula>. However, due to varying mechanisms, some differences remain between them. This study uses temperatures of urban facets in 3-D (TUF-3D) and surface-sensor-sun urban model (SUM) models to compute integral temperatures for multiple view angles over various urban forms and investigates the differences between <inline-formula> <tex-math>$T_{\\textrm {c}}$ </tex-math></inline-formula> and <inline-formula> <tex-math>$T_{\\text {SI}}$ </tex-math></inline-formula> and the influencing factors. The difference is minimized at VZA <inline-formula> <tex-math>$=48^{\\circ }$ </tex-math></inline-formula>–70° and VAA <inline-formula> <tex-math>$=0^{\\circ }$ </tex-math></inline-formula>–360°, and the mean absolute error (MAE) is 0.67 K. Urban canopy geometry (UCG) and solar zenith angles (SZAs) are the important influencing factors. Compared with <inline-formula> <tex-math>$T_{\\textrm {c}}$ </tex-math></inline-formula>, <inline-formula> <tex-math>$T_{\\text {SI}}$ </tex-math></inline-formula> underestimates the proportion of the wall. The MAE between <inline-formula> <tex-math>$T_{\\text {SI}}$ </tex-math></inline-formula> and <inline-formula> <tex-math>$T_{\\textrm {c}}$ </tex-math></inline-formula> decreases as the wall fraction in the integral domain increases but increases when the wall fraction exceeds a threshold. The upper limit of the optimal integral domain (OID) is basically 70° and the lower limit hovers around 48°, moving away from and then approaching the zenith as the SZA increases. This study evaluates the influencing factors for differences in <inline-formula> <tex-math>$T_{\\text {SI}}$ </tex-math></inline-formula> and <inline-formula> <tex-math>$T_{\\textrm {c}}$ </tex-math></inline-formula>. It offers a simple and high-accuracy method for approaching <inline-formula> <tex-math>$T_{\\textrm {c}}$ </tex-math></inline-formula> which can be used to facilitate research in urban energy balance and urban climate.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10960414/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Complete urban surface temperature (UST) ( $T_{\textrm {c}}$ ) takes into account the total active surface areas and is used to estimate the surface temperature over a 3-D rough surface such as cities. Direct calculations of $T_{\textrm {c}}$ require temperatures of each surface of the urban canopy, which are hard to obtain in actual remote sensing observations. Moreover, solid-angle integral temperature ( $T_{\text {SI}}$ ) calculated using multiangle remote sensing observations has great potential for approaching $T_{\textrm {c}}$ . However, due to varying mechanisms, some differences remain between them. This study uses temperatures of urban facets in 3-D (TUF-3D) and surface-sensor-sun urban model (SUM) models to compute integral temperatures for multiple view angles over various urban forms and investigates the differences between $T_{\textrm {c}}$ and $T_{\text {SI}}$ and the influencing factors. The difference is minimized at VZA $=48^{\circ }$ –70° and VAA $=0^{\circ }$ –360°, and the mean absolute error (MAE) is 0.67 K. Urban canopy geometry (UCG) and solar zenith angles (SZAs) are the important influencing factors. Compared with $T_{\textrm {c}}$ , $T_{\text {SI}}$ underestimates the proportion of the wall. The MAE between $T_{\text {SI}}$ and $T_{\textrm {c}}$ decreases as the wall fraction in the integral domain increases but increases when the wall fraction exceeds a threshold. The upper limit of the optimal integral domain (OID) is basically 70° and the lower limit hovers around 48°, moving away from and then approaching the zenith as the SZA increases. This study evaluates the influencing factors for differences in $T_{\text {SI}}$ and $T_{\textrm {c}}$ . It offers a simple and high-accuracy method for approaching $T_{\textrm {c}}$ which can be used to facilitate research in urban energy balance and urban climate.
城市整体和完全地表温度差异的影响因素探讨
完全城市表面温度(UST) ($T_{\textrm {c}}$)考虑了总活动表面积,用于估计城市等三维粗糙表面的表面温度。直接计算$T_{\textrm {c}}$需要城市冠层各表面的温度,这在实际遥感观测中很难得到。此外,利用多角度遥感观测计算的立体角积分温度($T_{\text {SI}}$)有很大的潜力接近$T_{\textrm {c}}$。然而,由于机制的不同,它们之间仍然存在一些差异。本研究利用三维(TUF-3D)和地表传感器-太阳城市模型(SUM)模型计算不同城市形态下多个视角的积分温度,研究$T_{\textrm {c}}$和$T_{\text {SI}}$之间的差异及其影响因素。在VZA $=48^{\circ}$ -70°和VAA $=0^{\circ}$ -360°时,差值最小,平均绝对误差(MAE)为0.67 K。城市冠层几何形状(UCG)和太阳天顶角(SZAs)是重要的影响因子。与$T_{\textrm {c}}$相比,$T_{\text {SI}}$低估了墙体的比例。$T_{\text {SI}}$与$T_{\textrm {c}}$之间的MAE随着积分域中壁分数的增加而减小,但当壁分数超过阈值时MAE增加。最优积分域(OID)的上限基本为70°,下限在48°左右徘徊,随着SZA的增大逐渐远离并接近天顶。本研究评估$T_{\text {SI}}$与$T_{\textrm {c}}$差异的影响因素。它提供了一种简单、高精度的逼近$T_{\textrm {c}}$的方法,可用于城市能量平衡和城市气候的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信