Federated Learning for Remote Sensing Image Classification Using Sparse Image Representations

Christina Kopidaki;Grigorios Tsagkatakis;Panagiotis Tsakalides
{"title":"Federated Learning for Remote Sensing Image Classification Using Sparse Image Representations","authors":"Christina Kopidaki;Grigorios Tsagkatakis;Panagiotis Tsakalides","doi":"10.1109/LGRS.2025.3557579","DOIUrl":null,"url":null,"abstract":"The increasing scale and complexity of remote sensing (RS) observations demand distributed processing to effectively manage the vast volumes of data generated. However, distributed processing presents significant challenges, including bandwidth limitations, high latency, and privacy concerns, especially when transmitting high-resolution images. To address these issues, we propose a novel scheme leveraging the encoder of a masked autoencoder (MAE) to generate associated embedding (CLS tokens) from masked images, which enables training deep learning models under federated learning (FL) scenarios. This approach enables the transmission of compact image patches instead of full images to processing nodes, drastically reducing bandwidth usage. On the processing nodes, classifiers are trained with the CLS tokens, and model weights are aggregated using FedAvg and FedProx FL algorithms. Experimental results on benchmark datasets demonstrate that the proposed approach significantly reduces data transmission requirements while maintaining and even surpassing the accuracy of systems with access to full data.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10948516","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10948516/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The increasing scale and complexity of remote sensing (RS) observations demand distributed processing to effectively manage the vast volumes of data generated. However, distributed processing presents significant challenges, including bandwidth limitations, high latency, and privacy concerns, especially when transmitting high-resolution images. To address these issues, we propose a novel scheme leveraging the encoder of a masked autoencoder (MAE) to generate associated embedding (CLS tokens) from masked images, which enables training deep learning models under federated learning (FL) scenarios. This approach enables the transmission of compact image patches instead of full images to processing nodes, drastically reducing bandwidth usage. On the processing nodes, classifiers are trained with the CLS tokens, and model weights are aggregated using FedAvg and FedProx FL algorithms. Experimental results on benchmark datasets demonstrate that the proposed approach significantly reduces data transmission requirements while maintaining and even surpassing the accuracy of systems with access to full data.
基于稀疏图像表示的遥感图像分类联邦学习
随着遥感观测规模和复杂性的不断增加,需要对产生的海量数据进行分布式处理。然而,分布式处理带来了重大挑战,包括带宽限制、高延迟和隐私问题,特别是在传输高分辨率图像时。为了解决这些问题,我们提出了一种利用掩码自动编码器(MAE)的编码器从掩码图像生成关联嵌入(CLS令牌)的新方案,从而能够在联邦学习(FL)场景下训练深度学习模型。这种方法可以将紧凑的图像块而不是完整的图像传输到处理节点,从而大大减少了带宽的使用。在处理节点上,使用CLS令牌训练分类器,使用fedag和FedProx FL算法聚合模型权重。在基准数据集上的实验结果表明,该方法在保持甚至超越具有完整数据访问权限的系统的准确性的同时,显著降低了数据传输需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信