DFDNet: Deep Feature Decoupling for Oriented Object Detection

Yuhan Sun;Shengyang Li
{"title":"DFDNet: Deep Feature Decoupling for Oriented Object Detection","authors":"Yuhan Sun;Shengyang Li","doi":"10.1109/LGRS.2025.3560388","DOIUrl":null,"url":null,"abstract":"Objects in remote sensing images exhibit diverse orientations. Current oriented object detection (OOD) methods estimate the object angle by designing different loss functions and bounding box representations. However, these approaches do not account for the effects of coupling between rotation-equivariant and -invariant features on the regression of oriented bounding box (OBB) parameters. We manifest the problem in two aspects: 1) the coupling of parameters with different attributes. Current OOD methods overlook the inherent differences among features representing an object’s location, scale, and angle, making it challenging to accurately predict the OBB parameters with different attributes and 2) the coupling of object and background features. Conventional OOD methods apply convolution kernels uniformly across objects and background regions, leading to feature entanglement and degradation in detection performance. To address the above issues, we propose a deep feature decoupling network (DFDNet) to decouple the extracted features. Specifically, we propose parameter regression decoupling (PRD) to separate feature maps based on their attributes, subsequently assigning them to distinct branches for the OBB parameter regression. This approach ensures the decoupling of features related to an object’s location, shape, angle, and category. Additionally, to enhance the ability of OOD networks to differentiate between object and background features, we designed the mask reinforcement module (MRM), which is integrated into the PRD branches. The MRM dynamically adjusts the weights of object features, suppressing background interference and enhancing the distinction between object and background features. Extensive experiments conducted on the DOTA, HRSC2016, and UCAS-AOD datasets validate the effectiveness of DFDNet, demonstrating that it achieves state-of-the-art performance.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10964376/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Objects in remote sensing images exhibit diverse orientations. Current oriented object detection (OOD) methods estimate the object angle by designing different loss functions and bounding box representations. However, these approaches do not account for the effects of coupling between rotation-equivariant and -invariant features on the regression of oriented bounding box (OBB) parameters. We manifest the problem in two aspects: 1) the coupling of parameters with different attributes. Current OOD methods overlook the inherent differences among features representing an object’s location, scale, and angle, making it challenging to accurately predict the OBB parameters with different attributes and 2) the coupling of object and background features. Conventional OOD methods apply convolution kernels uniformly across objects and background regions, leading to feature entanglement and degradation in detection performance. To address the above issues, we propose a deep feature decoupling network (DFDNet) to decouple the extracted features. Specifically, we propose parameter regression decoupling (PRD) to separate feature maps based on their attributes, subsequently assigning them to distinct branches for the OBB parameter regression. This approach ensures the decoupling of features related to an object’s location, shape, angle, and category. Additionally, to enhance the ability of OOD networks to differentiate between object and background features, we designed the mask reinforcement module (MRM), which is integrated into the PRD branches. The MRM dynamically adjusts the weights of object features, suppressing background interference and enhancing the distinction between object and background features. Extensive experiments conducted on the DOTA, HRSC2016, and UCAS-AOD datasets validate the effectiveness of DFDNet, demonstrating that it achieves state-of-the-art performance.
面向对象检测的深度特征解耦
遥感图像中的物体呈现出不同的方向。当前定向目标检测(OOD)方法通过设计不同的损失函数和边界框表示来估计目标角度。然而,这些方法没有考虑旋转等变和不变特征之间的耦合对定向边界框(OBB)参数回归的影响。问题表现在两个方面:1)不同属性参数的耦合。目前的OOD方法忽略了代表物体位置、尺度和角度的特征之间的内在差异,难以准确预测具有不同属性的OBB参数;2)物体与背景特征的耦合。传统的OOD方法在目标和背景区域之间均匀地应用卷积核,导致特征纠缠和检测性能下降。为了解决上述问题,我们提出了一个深度特征解耦网络(DFDNet)来解耦提取的特征。具体来说,我们提出参数回归解耦(PRD),根据特征映射的属性分离特征映射,然后将它们分配到不同的分支进行OBB参数回归。这种方法确保了与对象的位置、形状、角度和类别相关的特征的解耦。此外,为了增强OOD网络区分目标和背景特征的能力,我们设计了掩模增强模块(MRM),并将其集成到PRD分支中。该算法动态调整目标特征的权重,抑制背景干扰,增强目标与背景特征的区别。在DOTA、HRSC2016和UCAS-AOD数据集上进行的大量实验验证了DFDNet的有效性,表明它达到了最先进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信