Bridge post-disaster rapid inspection using 3D point cloud: a case study on vehicle-bridge collision

Tianyu Ma , Yanjie Zhu , Wen Xiong , Beiyang Zhang , Kaiwen Hu
{"title":"Bridge post-disaster rapid inspection using 3D point cloud: a case study on vehicle-bridge collision","authors":"Tianyu Ma ,&nbsp;Yanjie Zhu ,&nbsp;Wen Xiong ,&nbsp;Beiyang Zhang ,&nbsp;Kaiwen Hu","doi":"10.1016/j.iintel.2025.100153","DOIUrl":null,"url":null,"abstract":"<div><div>With the increase in traffic volume, vehicle-bridge collision accidents have been more frequent, creating significant threats to the safe operation of bridges. In the face of sudden vehicle collision accidents, bridge management agencies urgently require fast and accurate damage inspection methods to assess the service performance of the damaged bridge and provide support for post-disaster recovery. However, the service performance of a bridge is related to its overall structure and localized damage morphology. It is challenging for traditional measurement methods to obtain the three-dimensional (3D) morphology of the bridge and damaged areas. They can only obtain limited data points, which cannot provide adequate data for bridge damage assessment. Recently developed 3D laser scanning technology has guaranteed an accurate and timely 3D morphology inspection for the damaged bridge. Based on 3D laser scanning technology, this research proposed a post-disaster emergency inspection solution using a vehicle-bridge collision accident as a practical case, which provides a basis for emergency response decisions. This study focused on the rapid acquisition of the bridge digital model, spatial morphology identification of bridge components, and refined assessment of collision damage. The inspecting results revealed anomalies in the elevation of the damaged main girder and main cable, which necessitated urgent reinforcement measures. Additionally, the damaged hanger was found to have exhibited a lateral deflection angle of 17.12°, with a maximum cable clamp damage depth of 33.06 mm, requiring immediate replacement.</div></div>","PeriodicalId":100791,"journal":{"name":"Journal of Infrastructure Intelligence and Resilience","volume":"4 3","pages":"Article 100153"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Infrastructure Intelligence and Resilience","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772991525000167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the increase in traffic volume, vehicle-bridge collision accidents have been more frequent, creating significant threats to the safe operation of bridges. In the face of sudden vehicle collision accidents, bridge management agencies urgently require fast and accurate damage inspection methods to assess the service performance of the damaged bridge and provide support for post-disaster recovery. However, the service performance of a bridge is related to its overall structure and localized damage morphology. It is challenging for traditional measurement methods to obtain the three-dimensional (3D) morphology of the bridge and damaged areas. They can only obtain limited data points, which cannot provide adequate data for bridge damage assessment. Recently developed 3D laser scanning technology has guaranteed an accurate and timely 3D morphology inspection for the damaged bridge. Based on 3D laser scanning technology, this research proposed a post-disaster emergency inspection solution using a vehicle-bridge collision accident as a practical case, which provides a basis for emergency response decisions. This study focused on the rapid acquisition of the bridge digital model, spatial morphology identification of bridge components, and refined assessment of collision damage. The inspecting results revealed anomalies in the elevation of the damaged main girder and main cable, which necessitated urgent reinforcement measures. Additionally, the damaged hanger was found to have exhibited a lateral deflection angle of 17.12°, with a maximum cable clamp damage depth of 33.06 mm, requiring immediate replacement.
基于三维点云的桥梁灾后快速检测——以车桥碰撞为例
随着交通运输量的增加,车桥碰撞事故日益频繁,对桥梁的安全运行造成了重大威胁。面对突发性车辆碰撞事故,桥梁管理机构迫切需要快速准确的损伤检测方法,以评估受损桥梁的使用性能,为灾后恢复提供支持。然而,桥梁的使用性能与桥梁的整体结构和局部损伤形态有关。传统的测量方法难以获得桥梁和损伤区域的三维形貌。只能获得有限的数据点,不能为桥梁损伤评估提供充分的数据。近年来发展起来的三维激光扫描技术,保证了对受损桥梁进行准确、及时的三维形态检测。本研究基于三维激光扫描技术,以某车桥碰撞事故为实际案例,提出灾后应急检测方案,为应急响应决策提供依据。研究重点是桥梁数字模型的快速获取、桥梁构件的空间形态识别以及碰撞损伤的精细化评估。检查结果显示主梁和主缆受损标高异常,需要紧急采取加固措施。此外,发现受损的悬挂器横向偏转角度为17.12°,电缆夹的最大损坏深度为33.06 mm,需要立即更换。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信