Yunlong Gao , Qinting Wu , Zhenghong Xu , Jinyan Pan , Guifang Shao , Qingyuan Zhu , Feiping Nie
{"title":"Diversity-induced fuzzy clustering with Laplacian regularization","authors":"Yunlong Gao , Qinting Wu , Zhenghong Xu , Jinyan Pan , Guifang Shao , Qingyuan Zhu , Feiping Nie","doi":"10.1016/j.ins.2025.122225","DOIUrl":null,"url":null,"abstract":"<div><div>Fuzzy clustering is a fundamental technique in unsupervised learning for exploring data structures. However, fuzzy c-means (FCM), as a representative fuzzy clustering algorithm, performs relatively poorly when handling noisy data and outliers since it only considers global data characteristics while ignoring the local information. Additionally, FCM overlooks data diversity, making it difficult to handle complex data and leading to cluster center overlapping. To address these challenges, this paper proposes a novel approach called diversity-induced fuzzy clustering with Laplacian regularization (DiFCMLR). DiFCMLR incorporates Hilbert-Schmidt Independence Criterion (HSIC) to maximize the independence among clusters, thereby enhancing clustering diversity. In addition, DiFCMLR introduces Laplacian regularization to consider the local information of data and determine the affinity relationship between samples. Furthermore, it corrects the Euclidean distance between samples, thereby reducing the impact of the normal distribution prior assumption of FCM and improving the applicability of algorithm to complex data or size-imbalance problems. During the optimization, DiFCMLR utilizes iterative reweighting and the alternating direction method of multipliers, which enhance robustness against noise and outliers and achieve faster convergence towards better solutions. The effectiveness of DiFCMLR is confirmed through theoretical analysis and experimental evaluation.</div></div>","PeriodicalId":51063,"journal":{"name":"Information Sciences","volume":"715 ","pages":"Article 122225"},"PeriodicalIF":8.1000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020025525003573","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Fuzzy clustering is a fundamental technique in unsupervised learning for exploring data structures. However, fuzzy c-means (FCM), as a representative fuzzy clustering algorithm, performs relatively poorly when handling noisy data and outliers since it only considers global data characteristics while ignoring the local information. Additionally, FCM overlooks data diversity, making it difficult to handle complex data and leading to cluster center overlapping. To address these challenges, this paper proposes a novel approach called diversity-induced fuzzy clustering with Laplacian regularization (DiFCMLR). DiFCMLR incorporates Hilbert-Schmidt Independence Criterion (HSIC) to maximize the independence among clusters, thereby enhancing clustering diversity. In addition, DiFCMLR introduces Laplacian regularization to consider the local information of data and determine the affinity relationship between samples. Furthermore, it corrects the Euclidean distance between samples, thereby reducing the impact of the normal distribution prior assumption of FCM and improving the applicability of algorithm to complex data or size-imbalance problems. During the optimization, DiFCMLR utilizes iterative reweighting and the alternating direction method of multipliers, which enhance robustness against noise and outliers and achieve faster convergence towards better solutions. The effectiveness of DiFCMLR is confirmed through theoretical analysis and experimental evaluation.
期刊介绍:
Informatics and Computer Science Intelligent Systems Applications is an esteemed international journal that focuses on publishing original and creative research findings in the field of information sciences. We also feature a limited number of timely tutorial and surveying contributions.
Our journal aims to cater to a diverse audience, including researchers, developers, managers, strategic planners, graduate students, and anyone interested in staying up-to-date with cutting-edge research in information science, knowledge engineering, and intelligent systems. While readers are expected to share a common interest in information science, they come from varying backgrounds such as engineering, mathematics, statistics, physics, computer science, cell biology, molecular biology, management science, cognitive science, neurobiology, behavioral sciences, and biochemistry.