{"title":"General retinal image enhancement via reconstruction: Bridging distribution shifts using latent diffusion adaptors","authors":"Bingyu Yang, Haonan Han, Weihang Zhang, Huiqi Li","doi":"10.1016/j.media.2025.103603","DOIUrl":null,"url":null,"abstract":"<div><div>Deep learning-based fundus image enhancement has attracted extensive research attention recently, which has shown remarkable effectiveness in improving the visibility of low-quality images. However, these methods are often constrained to specific datasets and degradations, leading to poor generalization capabilities and having challenges in the fine-tuning process. Therefore, a general method for fundus image enhancement is proposed for improved generalizability and flexibility, which decomposes the enhancement task into reconstruction and adaptation phases. In the reconstruction phase, self-supervised training with unpaired data is employed, allowing the utilization of extensive public datasets to improve the generalizability of the model. During the adaptation phase, the model is fine-tuned according to the target datasets and their degradations, utilizing the pre-trained weights from the reconstruction. The proposed method improves the feasibility of latent diffusion models for retinal image enhancement. Adaptation loss and enhancement adaptor are proposed in autoencoders and diffusion networks for fewer paired training data, fewer trainable parameters, and faster convergence compared with training from scratch. The proposed method can be easily fine-tuned and experiments demonstrate the adaptability for different datasets and degradations. Additionally, the reconstruction-adaptation framework can be utilized in different backbones and other modalities, which shows its generality.</div></div>","PeriodicalId":18328,"journal":{"name":"Medical image analysis","volume":"103 ","pages":"Article 103603"},"PeriodicalIF":10.7000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image analysis","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1361841525001501","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Deep learning-based fundus image enhancement has attracted extensive research attention recently, which has shown remarkable effectiveness in improving the visibility of low-quality images. However, these methods are often constrained to specific datasets and degradations, leading to poor generalization capabilities and having challenges in the fine-tuning process. Therefore, a general method for fundus image enhancement is proposed for improved generalizability and flexibility, which decomposes the enhancement task into reconstruction and adaptation phases. In the reconstruction phase, self-supervised training with unpaired data is employed, allowing the utilization of extensive public datasets to improve the generalizability of the model. During the adaptation phase, the model is fine-tuned according to the target datasets and their degradations, utilizing the pre-trained weights from the reconstruction. The proposed method improves the feasibility of latent diffusion models for retinal image enhancement. Adaptation loss and enhancement adaptor are proposed in autoencoders and diffusion networks for fewer paired training data, fewer trainable parameters, and faster convergence compared with training from scratch. The proposed method can be easily fine-tuned and experiments demonstrate the adaptability for different datasets and degradations. Additionally, the reconstruction-adaptation framework can be utilized in different backbones and other modalities, which shows its generality.
期刊介绍:
Medical Image Analysis serves as a platform for sharing new research findings in the realm of medical and biological image analysis, with a focus on applications of computer vision, virtual reality, and robotics to biomedical imaging challenges. The journal prioritizes the publication of high-quality, original papers contributing to the fundamental science of processing, analyzing, and utilizing medical and biological images. It welcomes approaches utilizing biomedical image datasets across all spatial scales, from molecular/cellular imaging to tissue/organ imaging.