The Application of MgO in Janus Fibrous Membranes Enabling Efficient Radiative and Evaporative Cooling

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Yefei Feng, Wangshu Tong*, Shengqian Wang, Bingwei Chen and Yihe Zhang*, 
{"title":"The Application of MgO in Janus Fibrous Membranes Enabling Efficient Radiative and Evaporative Cooling","authors":"Yefei Feng,&nbsp;Wangshu Tong*,&nbsp;Shengqian Wang,&nbsp;Bingwei Chen and Yihe Zhang*,&nbsp;","doi":"10.1021/acsaem.5c0064210.1021/acsaem.5c00642","DOIUrl":null,"url":null,"abstract":"<p >Passive radiative cooling presents an energy-efficient thermal management strategy requiring zero external energy input, yet conventional hydrophobic cooling membranes often trap sweat and impurities at the skin interface, diminishing comfort and cooling efficacy. To overcome this limitation, we developed an electrospun dual-layer Janus fiber membrane with asymmetric wettability that synergistically combines passive radiative cooling with directional moisture transport. The Janus architecture facilitates continuous wicking of perspiration from the skin to the environment through its wettability gradient, significantly improving thermal regulation. Magnesium oxide (MgO) nanoparticles were strategically incorporated into the poly(vinylidene fluoride-<i>co</i>-hexafluoropropylene) (PVDF-HFP) layer, leveraging their exceptional phononic and electronic properties to achieve outstanding optical performance. The optimized membrane exhibits an average solar reflectance of 94.07% across 0.3–2.5 μm and high infrared emissivity of 90.03% in the atmospheric transparency window (8–13 μm). Outdoor evaluations demonstrated superior cooling performance compared to conventional cotton textiles, with the MgO@PVDF-HFP-PAN Janus membrane achieving an average temperature reduction of 8.7 °C and maximum cooling of 11.6 °C. Evaporative cooling experiments revealed sustained surface temperatures of 22.3 °C for the Janus membrane versus 31.6 °C for cotton, with evaporation contributing an additional 6.2 °C cooling enhancement. By integrating passive radiative cooling with evaporative cooling, this system effectively regulates heat dissipation and moisture transport, thereby enhancing thermal comfort across diverse environmental conditions.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"8 8","pages":"5482–5492 5482–5492"},"PeriodicalIF":5.4000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.5c00642","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Passive radiative cooling presents an energy-efficient thermal management strategy requiring zero external energy input, yet conventional hydrophobic cooling membranes often trap sweat and impurities at the skin interface, diminishing comfort and cooling efficacy. To overcome this limitation, we developed an electrospun dual-layer Janus fiber membrane with asymmetric wettability that synergistically combines passive radiative cooling with directional moisture transport. The Janus architecture facilitates continuous wicking of perspiration from the skin to the environment through its wettability gradient, significantly improving thermal regulation. Magnesium oxide (MgO) nanoparticles were strategically incorporated into the poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) layer, leveraging their exceptional phononic and electronic properties to achieve outstanding optical performance. The optimized membrane exhibits an average solar reflectance of 94.07% across 0.3–2.5 μm and high infrared emissivity of 90.03% in the atmospheric transparency window (8–13 μm). Outdoor evaluations demonstrated superior cooling performance compared to conventional cotton textiles, with the MgO@PVDF-HFP-PAN Janus membrane achieving an average temperature reduction of 8.7 °C and maximum cooling of 11.6 °C. Evaporative cooling experiments revealed sustained surface temperatures of 22.3 °C for the Janus membrane versus 31.6 °C for cotton, with evaporation contributing an additional 6.2 °C cooling enhancement. By integrating passive radiative cooling with evaporative cooling, this system effectively regulates heat dissipation and moisture transport, thereby enhancing thermal comfort across diverse environmental conditions.

Abstract Image

MgO在Janus纤维膜中的应用,实现高效的辐射和蒸发冷却
被动辐射冷却提供了一种节能的热管理策略,需要零外部能量输入,然而传统的疏水冷却膜经常在皮肤界面上捕获汗水和杂质,降低了舒适性和冷却效果。为了克服这一限制,我们开发了一种具有不对称润湿性的静电纺双层Janus纤维膜,该膜将被动辐射冷却与定向水分输送协同结合。Janus建筑通过其润湿性梯度,促进了皮肤上的汗液连续排到环境中,显著改善了热调节。氧化镁(MgO)纳米颗粒被战略性地整合到聚偏氟乙烯-共六氟丙烯(PVDF-HFP)层中,利用其独特的声子和电子特性来实现出色的光学性能。优化后的膜在0.3 ~ 2.5 μm的平均太阳反射率为94.07%,在8 ~ 13 μm的大气透明窗口内红外发射率高达90.03%。室外评估显示,与传统棉织物相比,MgO@PVDF-HFP-PAN Janus膜具有优越的冷却性能,平均温度降低8.7°C,最高冷却11.6°C。蒸发冷却实验表明,Janus膜的表面温度为22.3°C,而棉花的表面温度为31.6°C,其中蒸发作用额外增加了6.2°C的冷却效果。通过将被动辐射冷却与蒸发冷却相结合,该系统有效地调节了散热和水分输送,从而提高了不同环境条件下的热舒适性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信