Sodium Oleate-Modified Tin Oxide Electron Transport Layer for High-Performance Perovskite Solar Cells

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Li Chen, Peng Li, Xin Liu, Shuxia Li, Liping Yang, Ning Kang* and Chenglong Wang*, 
{"title":"Sodium Oleate-Modified Tin Oxide Electron Transport Layer for High-Performance Perovskite Solar Cells","authors":"Li Chen,&nbsp;Peng Li,&nbsp;Xin Liu,&nbsp;Shuxia Li,&nbsp;Liping Yang,&nbsp;Ning Kang* and Chenglong Wang*,&nbsp;","doi":"10.1021/acsaem.5c0017610.1021/acsaem.5c00176","DOIUrl":null,"url":null,"abstract":"<p >Internal and surface defects in the tin oxide (SnO<sub>2</sub>) electron transport layer (ETL) affect the performance of perovskite solar cells (PSCs). Herein, an effective strategy is designed to modify these defects for high-performance PSCs by incorporating sodium oleate (NaOA) into the SnO<sub>2</sub> ETL. The as-prepared SnO<sub>2</sub> + NaOA layer provides multiple nucleation sites to assist in the growth of the perovskite film with high crystal quality, increasing the charge transport capacity and suppressing nonradiative recombination. A champion power conversion efficiency (PCE) of up to 17.62% is obtained for PSCs with SnO<sub>2</sub> + NaOA ETL, corresponding to a filling factor (FF) of 76.00%, an open-circuit voltage (<i>V</i><sub>OC</sub>) of 1.104 V, and a short-circuit current density (<i>J</i><sub>SC</sub>) of 21.00 mA/cm<sup>2</sup>. Besides, this device maintains an initial PCE of 86.17% in nitrogen for 30 days, compared with only 82.02% for the control device. Finally, it is found that the enhancement of <i>J</i><sub>SC</sub> can be attributed to the long-chain alkyl groups, and −COO<sup>–</sup> and Na<sup>+</sup> play a key role in boosting <i>V</i><sub>OC</sub> and FF. This work provides a promising strategy to optimize ETLs using amphiphilic surfactants for high-performance devices.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"8 8","pages":"5222–5229 5222–5229"},"PeriodicalIF":5.4000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.5c00176","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Internal and surface defects in the tin oxide (SnO2) electron transport layer (ETL) affect the performance of perovskite solar cells (PSCs). Herein, an effective strategy is designed to modify these defects for high-performance PSCs by incorporating sodium oleate (NaOA) into the SnO2 ETL. The as-prepared SnO2 + NaOA layer provides multiple nucleation sites to assist in the growth of the perovskite film with high crystal quality, increasing the charge transport capacity and suppressing nonradiative recombination. A champion power conversion efficiency (PCE) of up to 17.62% is obtained for PSCs with SnO2 + NaOA ETL, corresponding to a filling factor (FF) of 76.00%, an open-circuit voltage (VOC) of 1.104 V, and a short-circuit current density (JSC) of 21.00 mA/cm2. Besides, this device maintains an initial PCE of 86.17% in nitrogen for 30 days, compared with only 82.02% for the control device. Finally, it is found that the enhancement of JSC can be attributed to the long-chain alkyl groups, and −COO and Na+ play a key role in boosting VOC and FF. This work provides a promising strategy to optimize ETLs using amphiphilic surfactants for high-performance devices.

Abstract Image

高性能钙钛矿太阳能电池用油酸钠修饰氧化锡电子传输层
氧化锡(SnO2)电子传递层(ETL)内部和表面缺陷影响钙钛矿太阳能电池(PSCs)的性能。本文设计了一种有效的策略,通过在SnO2 ETL中掺入油酸钠(NaOA)来修饰这些缺陷。制备的SnO2 + NaOA层提供了多个成核位点,有助于钙钛矿膜的生长,具有高晶体质量,增加电荷输运能力,抑制非辐射复合。在SnO2 + NaOA ETL下,PSCs的功率转换效率(PCE)高达17.62%,相应的填充系数(FF)为76.00%,开路电压(VOC)为1.104 V,短路电流密度(JSC)为21.00 mA/cm2。此外,该装置在氮气中维持了30天的初始PCE为86.17%,而控制装置的PCE仅为82.02%。最后,我们发现JSC的增强可归因于长链烷基,−COO -和Na+在提高VOC和FF中起关键作用。这项工作为使用两亲性表面活性剂优化高性能器件的etl提供了一个有前途的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信