Engineering NiRu Nanoalloys on N-Doped Carbon Nanocages for Efficient Electrocatalytic Hydrogen Oxidation Reaction

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Na Jin, Xiao Yang, Yong Li, Wanjing Lai, Hailin Jiang, Yanghua Li, Kuo Liu, Yimeng Cai, Linjie Zhang* and Lili Han*, 
{"title":"Engineering NiRu Nanoalloys on N-Doped Carbon Nanocages for Efficient Electrocatalytic Hydrogen Oxidation Reaction","authors":"Na Jin,&nbsp;Xiao Yang,&nbsp;Yong Li,&nbsp;Wanjing Lai,&nbsp;Hailin Jiang,&nbsp;Yanghua Li,&nbsp;Kuo Liu,&nbsp;Yimeng Cai,&nbsp;Linjie Zhang* and Lili Han*,&nbsp;","doi":"10.1021/acsaem.5c0025910.1021/acsaem.5c00259","DOIUrl":null,"url":null,"abstract":"<p >Hydrogen, characterized by its high energy density, efficiency, and environmentally benign output, emerges as a promising alternative to fossil fuels. However, the development of robust hydrogen oxidation reaction (HOR) catalysts for efficient energy conversion remains a significant challenge. Herein, a NiRu nanoalloy catalyst supported on N-doped hollow carbon nanocages (NiRu/NC) is synthesized via a tandem pyrolysis method. The NiRu/NC catalyst exhibits superior alkaline HOR activity, achieving diffusion-limited current density of 2.56 mA cm<sup>–2</sup> and maintaining stability for 80,000 s with a decay rate of only 5.9%, compared to a 28.7% decay rate for benchmark Pt/C after 35,000 s. Additionally, it demonstrates remarkable resistance to CO poisoning, with the current density decreasing by only 50.7% after 1800 s, while the current density of Pt/C dropped to 0 after 800 s. Density functional theory calculations indicate that Ni in the NiRu nanoalloy effectively modulates the electron distribution, thereby ameliorating the electronic structure and enhancing the adsorption of reaction intermediates. These optimizations endow NiRu/NC with both favorable hydrogen-binding energy (HBE) and hydroxyl-binding energy (OHBE), leading to improved HOR efficiency. This work not only offers an innovative approach for synthesizing high-performance alloy-based HOR catalysts but also deepens the fundamental understanding of the bimetallic synergistic mechanisms in HOR catalysis.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"8 8","pages":"5299–5308 5299–5308"},"PeriodicalIF":5.4000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.5c00259","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Hydrogen, characterized by its high energy density, efficiency, and environmentally benign output, emerges as a promising alternative to fossil fuels. However, the development of robust hydrogen oxidation reaction (HOR) catalysts for efficient energy conversion remains a significant challenge. Herein, a NiRu nanoalloy catalyst supported on N-doped hollow carbon nanocages (NiRu/NC) is synthesized via a tandem pyrolysis method. The NiRu/NC catalyst exhibits superior alkaline HOR activity, achieving diffusion-limited current density of 2.56 mA cm–2 and maintaining stability for 80,000 s with a decay rate of only 5.9%, compared to a 28.7% decay rate for benchmark Pt/C after 35,000 s. Additionally, it demonstrates remarkable resistance to CO poisoning, with the current density decreasing by only 50.7% after 1800 s, while the current density of Pt/C dropped to 0 after 800 s. Density functional theory calculations indicate that Ni in the NiRu nanoalloy effectively modulates the electron distribution, thereby ameliorating the electronic structure and enhancing the adsorption of reaction intermediates. These optimizations endow NiRu/NC with both favorable hydrogen-binding energy (HBE) and hydroxyl-binding energy (OHBE), leading to improved HOR efficiency. This work not only offers an innovative approach for synthesizing high-performance alloy-based HOR catalysts but also deepens the fundamental understanding of the bimetallic synergistic mechanisms in HOR catalysis.

Abstract Image

氮掺杂碳纳米笼上的工程NiRu纳米合金用于高效电催化氢氧化反应
氢以其高能量密度、效率和环保输出为特点,成为化石燃料的有希望的替代品。然而,开发高效能量转换的氢氧化反应催化剂仍然是一个重大挑战。本文采用串联热解法合成了一种负载在n掺杂空心碳纳米笼(NiRu/NC)上的纳米合金催化剂。NiRu/NC催化剂表现出优异的碱性HOR活性,达到2.56 mA cm-2的限扩散电流密度,保持80000 s的稳定性,衰减率仅为5.9%,而基准Pt/C在35000 s后的衰减率为28.7%。此外,它对CO中毒表现出显著的抵抗能力,1800 s后电流密度仅下降50.7%,而800 s后Pt/C电流密度降至0。密度泛函理论计算表明,Ni在纳米合金中有效地调节了电子分布,从而改善了电子结构,增强了反应中间体的吸附。这些优化使NiRu/NC具有良好的氢结合能(HBE)和羟基结合能(OHBE),从而提高了HOR效率。这项工作不仅为合成高性能合金基HOR催化剂提供了一种创新方法,而且加深了对HOR催化中双金属协同机制的基本认识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信