An asymptotic preserving scheme for the defocusing Davey–Stewartson II equation in the semiclassical limit

IF 2.3 2区 数学 Q1 MATHEMATICS, APPLIED
Dandan Wang, Hanquan Wang
{"title":"An asymptotic preserving scheme for the defocusing Davey–Stewartson II equation in the semiclassical limit","authors":"Dandan Wang, Hanquan Wang","doi":"10.1093/imanum/draf019","DOIUrl":null,"url":null,"abstract":"This article is devoted to constructing an asymptotic preserving method for the defocusing Davey–Stewartson II equation in the semiclassical limit. First, we introduce the Wentzel–Kramers–Brillouin ansatz $\\varPsi =A^\\varepsilon e^{i\\phi ^\\varepsilon /\\varepsilon }$ for the equation and obtain the new system for both $A^\\varepsilon $ and $\\phi ^\\varepsilon $, where the complex-valued amplitude function $A^\\varepsilon $ can avoid automatically the singularity of the quantum potential in vacuum. Secondly, we prove the local existence of the solutions of the new system for $t\\in [0,T]$, and show that the solutions of the new system are convergent to the limit when $\\varepsilon \\rightarrow 0$. Finally, we construct a second-order time-splitting Fourier spectral method for the new system and numerous numerical experiments show that the method is uniformly accurate with respect to $\\varepsilon $, i.e., its accuracy does not deteriorate for vanishing $\\varepsilon $, and it is an asymptotic preserving one. However, it might not be uniformly convergent.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":"79 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imanum/draf019","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This article is devoted to constructing an asymptotic preserving method for the defocusing Davey–Stewartson II equation in the semiclassical limit. First, we introduce the Wentzel–Kramers–Brillouin ansatz $\varPsi =A^\varepsilon e^{i\phi ^\varepsilon /\varepsilon }$ for the equation and obtain the new system for both $A^\varepsilon $ and $\phi ^\varepsilon $, where the complex-valued amplitude function $A^\varepsilon $ can avoid automatically the singularity of the quantum potential in vacuum. Secondly, we prove the local existence of the solutions of the new system for $t\in [0,T]$, and show that the solutions of the new system are convergent to the limit when $\varepsilon \rightarrow 0$. Finally, we construct a second-order time-splitting Fourier spectral method for the new system and numerous numerical experiments show that the method is uniformly accurate with respect to $\varepsilon $, i.e., its accuracy does not deteriorate for vanishing $\varepsilon $, and it is an asymptotic preserving one. However, it might not be uniformly convergent.
半经典极限下离焦Davey-Stewartson II方程的渐近保持格式
本文致力于构造离焦Davey-Stewartson II方程在半经典极限下的渐近保持方法。首先,对方程引入Wentzel-Kramers-Brillouin ansatz $\varPsi =A^\varepsilon e^{i\phi ^\varepsilon /\varepsilon }$,得到了$A^\varepsilon $和$\phi ^\varepsilon $的新系统,其中复值振幅函数$A^\varepsilon $可以自动避免真空中量子势的奇异性。其次,对$t\in [0,T]$证明了新系统解的局部存在性,并证明了新系统解在$\varepsilon \rightarrow 0$时收敛于极限。最后,我们为新系统构造了二阶分时傅里叶谱方法,大量的数值实验表明,该方法对于$\varepsilon $是一致精确的,即它的精度不会因$\varepsilon $消失而下降,并且是渐近保持的。然而,它可能不是一致收敛的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IMA Journal of Numerical Analysis
IMA Journal of Numerical Analysis 数学-应用数学
CiteScore
5.30
自引率
4.80%
发文量
79
审稿时长
6-12 weeks
期刊介绍: The IMA Journal of Numerical Analysis (IMAJNA) publishes original contributions to all fields of numerical analysis; articles will be accepted which treat the theory, development or use of practical algorithms and interactions between these aspects. Occasional survey articles are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信