{"title":"Identification of HIBCH and MGME1 as Mitochondrial Dynamics-Related Biomarkers in Alzheimer's Disease Via Integrated Bioinformatics Analysis","authors":"Hailong Li, Fei Feng, Shoupin Xie, Yanping Ma, Yafeng Wang, Fan Zhang, Hongyan Wu, Shenghui Huang","doi":"10.1049/syb2.70018","DOIUrl":null,"url":null,"abstract":"<p>Mitochondrial dynamics (MD) play a crucial role in the genesis of Alzheimer's disease (AD); however, the molecular mechanisms underlying MD dysregulation in AD remain unclear. This study aimed to identify critical molecules of MD that contribute to AD progression using GEO data and bioinformatics approaches. The GSE63061 dataset comparing AD patients with healthy controls was analysed, WGCNA was employed to identify co-expression modules and differentially expressed genes (DEGs) and LASSO model was developed and verified using the DEGs to screen for potential biomarkers. A PPI network was built to predict upstream miRNAs, which were experimentally validated using luciferase reporter assays. A total of 3518 DEGs were identified (2209 upregulated, 1309 downregulated; |log<sub>2</sub>FC| > 1.5, adjusted <i>p</i> < 0.05). WGCNA revealed 160 MD-related genes. LASSO regression selected HIBCH and MGME1 as novel biomarkers with significant downregulation in AD (fold change > 2, <i>p</i> < 0.001). KEGG enrichment analysis highlighted pathways associated with neurodegeneration. Luciferase assays confirmed direct binding of miR-922 to the 3′UTR of MGME1. HIBCH and MGME1 are promising diagnostic biomarkers for AD with AUC values of 0.73 and 0.74. Mechanistically, miR-922 was experimentally validated to directly bind MGME1 3′UTR.</p>","PeriodicalId":50379,"journal":{"name":"IET Systems Biology","volume":"19 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/syb2.70018","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Systems Biology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/syb2.70018","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Mitochondrial dynamics (MD) play a crucial role in the genesis of Alzheimer's disease (AD); however, the molecular mechanisms underlying MD dysregulation in AD remain unclear. This study aimed to identify critical molecules of MD that contribute to AD progression using GEO data and bioinformatics approaches. The GSE63061 dataset comparing AD patients with healthy controls was analysed, WGCNA was employed to identify co-expression modules and differentially expressed genes (DEGs) and LASSO model was developed and verified using the DEGs to screen for potential biomarkers. A PPI network was built to predict upstream miRNAs, which were experimentally validated using luciferase reporter assays. A total of 3518 DEGs were identified (2209 upregulated, 1309 downregulated; |log2FC| > 1.5, adjusted p < 0.05). WGCNA revealed 160 MD-related genes. LASSO regression selected HIBCH and MGME1 as novel biomarkers with significant downregulation in AD (fold change > 2, p < 0.001). KEGG enrichment analysis highlighted pathways associated with neurodegeneration. Luciferase assays confirmed direct binding of miR-922 to the 3′UTR of MGME1. HIBCH and MGME1 are promising diagnostic biomarkers for AD with AUC values of 0.73 and 0.74. Mechanistically, miR-922 was experimentally validated to directly bind MGME1 3′UTR.
期刊介绍:
IET Systems Biology covers intra- and inter-cellular dynamics, using systems- and signal-oriented approaches. Papers that analyse genomic data in order to identify variables and basic relationships between them are considered if the results provide a basis for mathematical modelling and simulation of cellular dynamics. Manuscripts on molecular and cell biological studies are encouraged if the aim is a systems approach to dynamic interactions within and between cells.
The scope includes the following topics:
Genomics, transcriptomics, proteomics, metabolomics, cells, tissue and the physiome; molecular and cellular interaction, gene, cell and protein function; networks and pathways; metabolism and cell signalling; dynamics, regulation and control; systems, signals, and information; experimental data analysis; mathematical modelling, simulation and theoretical analysis; biological modelling, simulation, prediction and control; methodologies, databases, tools and algorithms for modelling and simulation; modelling, analysis and control of biological networks; synthetic biology and bioengineering based on systems biology.