{"title":"scRSSL: Residual semi-supervised learning with deep generative models to automatically identify cell types","authors":"Yanru Gao, Hongyu Duan, Fanhao Meng, Conghui Zhang, Xiyue Li, Feng Li","doi":"10.1049/syb2.12107","DOIUrl":null,"url":null,"abstract":"<p>Single-cell sequencing (scRNA-seq) allows researchers to study cellular heterogeneity in individual cells. In single-cell transcriptomics analysis, identifying the cell type of individual cells is a key task. At present, single-cell datasets often face the challenges of high dimensionality, large number of samples, high sparsity and sample imbalance. The traditional methods of cell type recognition have been challenged. The authors propose a deep residual generation model based on semi-supervised learning (scRSSL) to address these challenges. ScRSSL creatively introduces residual networks into semi-supervised generative models. The authors take advantage of its semi-supervised learning to solve the problem of sample imbalance. During the training of the model, the authors use a residual neural network to accomplish the inference of cell types so that local features of single-cell data can be extracted. Because of the semi-supervised learning approach, it can automatically and accurately predict individual cell types in datasets, even with only a small number of cell labels. Experimentally, the authors’ method has proven to have better performance compared to other methods.</p>","PeriodicalId":50379,"journal":{"name":"IET Systems Biology","volume":"19 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/syb2.12107","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Systems Biology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/syb2.12107","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Single-cell sequencing (scRNA-seq) allows researchers to study cellular heterogeneity in individual cells. In single-cell transcriptomics analysis, identifying the cell type of individual cells is a key task. At present, single-cell datasets often face the challenges of high dimensionality, large number of samples, high sparsity and sample imbalance. The traditional methods of cell type recognition have been challenged. The authors propose a deep residual generation model based on semi-supervised learning (scRSSL) to address these challenges. ScRSSL creatively introduces residual networks into semi-supervised generative models. The authors take advantage of its semi-supervised learning to solve the problem of sample imbalance. During the training of the model, the authors use a residual neural network to accomplish the inference of cell types so that local features of single-cell data can be extracted. Because of the semi-supervised learning approach, it can automatically and accurately predict individual cell types in datasets, even with only a small number of cell labels. Experimentally, the authors’ method has proven to have better performance compared to other methods.
期刊介绍:
IET Systems Biology covers intra- and inter-cellular dynamics, using systems- and signal-oriented approaches. Papers that analyse genomic data in order to identify variables and basic relationships between them are considered if the results provide a basis for mathematical modelling and simulation of cellular dynamics. Manuscripts on molecular and cell biological studies are encouraged if the aim is a systems approach to dynamic interactions within and between cells.
The scope includes the following topics:
Genomics, transcriptomics, proteomics, metabolomics, cells, tissue and the physiome; molecular and cellular interaction, gene, cell and protein function; networks and pathways; metabolism and cell signalling; dynamics, regulation and control; systems, signals, and information; experimental data analysis; mathematical modelling, simulation and theoretical analysis; biological modelling, simulation, prediction and control; methodologies, databases, tools and algorithms for modelling and simulation; modelling, analysis and control of biological networks; synthetic biology and bioengineering based on systems biology.