scRSSL: Residual semi-supervised learning with deep generative models to automatically identify cell types

IF 1.9 4区 生物学 Q4 CELL BIOLOGY
Yanru Gao, Hongyu Duan, Fanhao Meng, Conghui Zhang, Xiyue Li, Feng Li
{"title":"scRSSL: Residual semi-supervised learning with deep generative models to automatically identify cell types","authors":"Yanru Gao,&nbsp;Hongyu Duan,&nbsp;Fanhao Meng,&nbsp;Conghui Zhang,&nbsp;Xiyue Li,&nbsp;Feng Li","doi":"10.1049/syb2.12107","DOIUrl":null,"url":null,"abstract":"<p>Single-cell sequencing (scRNA-seq) allows researchers to study cellular heterogeneity in individual cells. In single-cell transcriptomics analysis, identifying the cell type of individual cells is a key task. At present, single-cell datasets often face the challenges of high dimensionality, large number of samples, high sparsity and sample imbalance. The traditional methods of cell type recognition have been challenged. The authors propose a deep residual generation model based on semi-supervised learning (scRSSL) to address these challenges. ScRSSL creatively introduces residual networks into semi-supervised generative models. The authors take advantage of its semi-supervised learning to solve the problem of sample imbalance. During the training of the model, the authors use a residual neural network to accomplish the inference of cell types so that local features of single-cell data can be extracted. Because of the semi-supervised learning approach, it can automatically and accurately predict individual cell types in datasets, even with only a small number of cell labels. Experimentally, the authors’ method has proven to have better performance compared to other methods.</p>","PeriodicalId":50379,"journal":{"name":"IET Systems Biology","volume":"19 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/syb2.12107","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Systems Biology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/syb2.12107","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Single-cell sequencing (scRNA-seq) allows researchers to study cellular heterogeneity in individual cells. In single-cell transcriptomics analysis, identifying the cell type of individual cells is a key task. At present, single-cell datasets often face the challenges of high dimensionality, large number of samples, high sparsity and sample imbalance. The traditional methods of cell type recognition have been challenged. The authors propose a deep residual generation model based on semi-supervised learning (scRSSL) to address these challenges. ScRSSL creatively introduces residual networks into semi-supervised generative models. The authors take advantage of its semi-supervised learning to solve the problem of sample imbalance. During the training of the model, the authors use a residual neural network to accomplish the inference of cell types so that local features of single-cell data can be extracted. Because of the semi-supervised learning approach, it can automatically and accurately predict individual cell types in datasets, even with only a small number of cell labels. Experimentally, the authors’ method has proven to have better performance compared to other methods.

Abstract Image

scRSSL:残差半监督学习与深度生成模型自动识别细胞类型
单细胞测序(scRNA-seq)允许研究人员研究单个细胞的细胞异质性。在单细胞转录组学分析中,识别单个细胞的细胞类型是一项关键任务。目前,单细胞数据集往往面临着高维数、大量样本、高稀疏度和样本不平衡的挑战。传统的细胞类型识别方法受到了挑战。作者提出了一种基于半监督学习(scRSSL)的深度残差生成模型来解决这些挑战。scssl创造性地将残差网络引入到半监督生成模型中。利用它的半监督学习来解决样本不平衡问题。在模型的训练过程中,利用残差神经网络来完成细胞类型的推断,从而提取单细胞数据的局部特征。由于采用了半监督学习方法,即使只有少量的细胞标签,它也可以自动准确地预测数据集中的单个细胞类型。实验证明,与其他方法相比,该方法具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IET Systems Biology
IET Systems Biology 生物-数学与计算生物学
CiteScore
4.20
自引率
4.30%
发文量
17
审稿时长
>12 weeks
期刊介绍: IET Systems Biology covers intra- and inter-cellular dynamics, using systems- and signal-oriented approaches. Papers that analyse genomic data in order to identify variables and basic relationships between them are considered if the results provide a basis for mathematical modelling and simulation of cellular dynamics. Manuscripts on molecular and cell biological studies are encouraged if the aim is a systems approach to dynamic interactions within and between cells. The scope includes the following topics: Genomics, transcriptomics, proteomics, metabolomics, cells, tissue and the physiome; molecular and cellular interaction, gene, cell and protein function; networks and pathways; metabolism and cell signalling; dynamics, regulation and control; systems, signals, and information; experimental data analysis; mathematical modelling, simulation and theoretical analysis; biological modelling, simulation, prediction and control; methodologies, databases, tools and algorithms for modelling and simulation; modelling, analysis and control of biological networks; synthetic biology and bioengineering based on systems biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信