A scale of spaces of functions with integrable Fourier transform

IF 1.4 3区 数学 Q1 MATHEMATICS
Elijah Liflyand
{"title":"A scale of spaces of functions with integrable Fourier transform","authors":"Elijah Liflyand","doi":"10.1007/s13324-025-01062-w","DOIUrl":null,"url":null,"abstract":"<div><p>The spaces introduced by Sweezy are, in many respects, natural extensions of the real Hardy space <span>\\(H^1({\\mathbb R}^d)\\)</span>. They are nested in full between <span>\\(H^1({\\mathbb R}^d)\\)</span> and <span>\\(L_0^1({\\mathbb R}^d)\\)</span>. Contrary to <span>\\(H^1({\\mathbb R}^d)\\)</span>, they are subject only to atomic characterization. In this paper, the possibilities that atomic expansions allow one are used for proving analogs of the Fourier–Hardy inequality for the Sweezy spaces. The results obtained are used, in dimension one, for extending the scale of the spaces of functions with integrable Fourier transform. An application to trigonometric series is also given.</p></div>","PeriodicalId":48860,"journal":{"name":"Analysis and Mathematical Physics","volume":"15 3","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Mathematical Physics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s13324-025-01062-w","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The spaces introduced by Sweezy are, in many respects, natural extensions of the real Hardy space \(H^1({\mathbb R}^d)\). They are nested in full between \(H^1({\mathbb R}^d)\) and \(L_0^1({\mathbb R}^d)\). Contrary to \(H^1({\mathbb R}^d)\), they are subject only to atomic characterization. In this paper, the possibilities that atomic expansions allow one are used for proving analogs of the Fourier–Hardy inequality for the Sweezy spaces. The results obtained are used, in dimension one, for extending the scale of the spaces of functions with integrable Fourier transform. An application to trigonometric series is also given.

具有可积傅里叶变换的函数空间的尺度
斯威齐所引入的空间,在很多方面都是哈代空间的自然延伸\(H^1({\mathbb R}^d)\)。它们完全嵌套在\(H^1({\mathbb R}^d)\)和\(L_0^1({\mathbb R}^d)\)之间。与\(H^1({\mathbb R}^d)\)相反,它们只受原子表征的影响。本文利用原子展开所允许的可能性,证明了Sweezy空间中Fourier-Hardy不等式的类似性质。所得结果在一维上用于扩展傅里叶变换可积函数空间的尺度。并给出了在三角级数中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Analysis and Mathematical Physics
Analysis and Mathematical Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
0.00%
发文量
122
期刊介绍: Analysis and Mathematical Physics (AMP) publishes current research results as well as selected high-quality survey articles in real, complex, harmonic; and geometric analysis originating and or having applications in mathematical physics. The journal promotes dialog among specialists in these areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信