A theoretical and experimental study on indentation creep with x-silica addition to an Al–8Zn composite alloy, based on Adaptive Neuro-Fuzzy Inference System (ANFIS)

IF 4.3 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Eman AbdElRhiem , Shereen M. Abdelaziz , Yosry F. Barakat , Saad G. Mohamed , H.I. Lebda
{"title":"A theoretical and experimental study on indentation creep with x-silica addition to an Al–8Zn composite alloy, based on Adaptive Neuro-Fuzzy Inference System (ANFIS)","authors":"Eman AbdElRhiem ,&nbsp;Shereen M. Abdelaziz ,&nbsp;Yosry F. Barakat ,&nbsp;Saad G. Mohamed ,&nbsp;H.I. Lebda","doi":"10.1016/j.matchemphys.2025.130937","DOIUrl":null,"url":null,"abstract":"<div><div>This research is based on the significance of using the adaptive neuro-fuzzy inference system (ANFIS) to advance scientific study and integrate the theoretical and experimental domains. (ANFIS) is one of the soft computing techniques that play a significant role in modeling. This model studies the effects of adding nanosilica particles and aging temperatures on the indentation creep behavior of Al–8Zn alloys. The optimal ANFIS model configuration will be chosen by comparing the RMSE values for different types and the number of membership functions (MFs) assigned to each ANFIS structure. The best results were found as root mean square error (RMSE) is <span><math><mrow><mn>1.1</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>8</mn></mrow></msup></mrow></math></span>, R-squared (R<sup>2</sup>) is 0.9742, and mean absolute error (MAE) is <span><math><mrow><mn>3.3</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>5</mn></mrow></msup></mrow></math></span> by using the Gbellmf type with four MFs. Vickers hardness measurements were used to evaluate the indentation creep behavior of Al–8Zn-x nanoSiO<sub>2</sub>, x= (0, 0.5, 1, 1.5, 2, 2.5, 3) wt.% under different aging temperature ranges from 398 to 478 K for 2 h, dwell times from 10 to 90 s, and a constant load of 200 gm. A scanning electron microscope (SEM) with an energy dispersive spectroscope (EDS) and X-ray diffraction (XRD) was used to study the change in microstructure. Increasing nanoSiO<sub>2</sub> concentration from 0.5 % to 1 % decreased minimum creep rates, but increasing nanoSiO<sub>2</sub> concentration from 1.5 % to 2 % increased minimum creep rates across all aging temperatures. Values of the stress exponent in the range of 5.9–8.82 decrease as the concentration of nanoSiO<sub>2</sub> rises to 1, and then they increase as the concentration of nanoSiO<sub>2</sub> rises, with activation energy ranging from 92.8 kJ/mol to 99.8 kJ/mol. ANFIS was utilized to confirm the experimental results further, and the method was also applied to predict the minimum creep rates at 2.5 % and 3 %. This study suggests that the ANFIS technique is a useful method for forecasting mechanical properties and deformation mechanisms of materials.</div></div>","PeriodicalId":18227,"journal":{"name":"Materials Chemistry and Physics","volume":"341 ","pages":"Article 130937"},"PeriodicalIF":4.3000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry and Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0254058425005838","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This research is based on the significance of using the adaptive neuro-fuzzy inference system (ANFIS) to advance scientific study and integrate the theoretical and experimental domains. (ANFIS) is one of the soft computing techniques that play a significant role in modeling. This model studies the effects of adding nanosilica particles and aging temperatures on the indentation creep behavior of Al–8Zn alloys. The optimal ANFIS model configuration will be chosen by comparing the RMSE values for different types and the number of membership functions (MFs) assigned to each ANFIS structure. The best results were found as root mean square error (RMSE) is 1.1×108, R-squared (R2) is 0.9742, and mean absolute error (MAE) is 3.3×105 by using the Gbellmf type with four MFs. Vickers hardness measurements were used to evaluate the indentation creep behavior of Al–8Zn-x nanoSiO2, x= (0, 0.5, 1, 1.5, 2, 2.5, 3) wt.% under different aging temperature ranges from 398 to 478 K for 2 h, dwell times from 10 to 90 s, and a constant load of 200 gm. A scanning electron microscope (SEM) with an energy dispersive spectroscope (EDS) and X-ray diffraction (XRD) was used to study the change in microstructure. Increasing nanoSiO2 concentration from 0.5 % to 1 % decreased minimum creep rates, but increasing nanoSiO2 concentration from 1.5 % to 2 % increased minimum creep rates across all aging temperatures. Values of the stress exponent in the range of 5.9–8.82 decrease as the concentration of nanoSiO2 rises to 1, and then they increase as the concentration of nanoSiO2 rises, with activation energy ranging from 92.8 kJ/mol to 99.8 kJ/mol. ANFIS was utilized to confirm the experimental results further, and the method was also applied to predict the minimum creep rates at 2.5 % and 3 %. This study suggests that the ANFIS technique is a useful method for forecasting mechanical properties and deformation mechanisms of materials.
基于自适应神经模糊推理系统(ANFIS)的x-二氧化硅对Al-8Zn复合合金压痕蠕变的理论和实验研究
本研究基于使用自适应神经模糊推理系统(ANFIS)推进科学研究和整合理论和实验领域的意义。(ANFIS)是在建模中起重要作用的软计算技术之一。该模型研究了添加纳米二氧化硅颗粒和时效温度对Al-8Zn合金压痕蠕变行为的影响。通过比较不同类型的RMSE值和分配给每个ANFIS结构的隶属函数(mf)的数量来选择最佳的ANFIS模型配置。采用4个MFs的Gbellmf型,得到的最佳结果为均方根误差(RMSE)为1.1×10−8,r²(R2)为0.9742,平均绝对误差(MAE)为3.3×10−5。在398 ~ 478 K时效2 h,停留时间10 ~ 90 s,载荷为200 gm的条件下,采用维氏硬度测定法对Al-8Zn-x纳米sio2在x=(0、0.5、1、1.5、2、2.5、3)wt.%的压痕蠕变行为进行了评价,并利用扫描电镜(SEM)、能谱仪(EDS)和x射线衍射仪(XRD)研究了显微组织的变化。将纳米sio2浓度从0.5%增加到1%降低了最小蠕变速率,但将纳米sio2浓度从1.5%增加到2%增加了所有时效温度下的最小蠕变速率。在5.9 ~ 8.82范围内,应力指数随纳米sio2浓度的增加先减小后增大,活化能范围为92.8 ~ 99.8 kJ/mol。利用ANFIS进一步验证了实验结果,并应用该方法预测了2.5%和3%时的最小蠕变速率。该研究表明,ANFIS技术是预测材料力学性能和变形机制的有效方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Chemistry and Physics
Materials Chemistry and Physics 工程技术-材料科学:综合
CiteScore
8.70
自引率
4.30%
发文量
1515
审稿时长
69 days
期刊介绍: Materials Chemistry and Physics is devoted to short communications, full-length research papers and feature articles on interrelationships among structure, properties, processing and performance of materials. The Editors welcome manuscripts on thin films, surface and interface science, materials degradation and reliability, metallurgy, semiconductors and optoelectronic materials, fine ceramics, magnetics, superconductors, specialty polymers, nano-materials and composite materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信