R.Q. Cao , Y.L. Lu , F.X. Meng , J. Pan , Q. Yu , Y. Li
{"title":"Enhanced high-cycle fatigue behavior of electrodeposited nickel plates with optimized grain-size gradient structures","authors":"R.Q. Cao , Y.L. Lu , F.X. Meng , J. Pan , Q. Yu , Y. Li","doi":"10.1016/j.ijfatigue.2025.109018","DOIUrl":null,"url":null,"abstract":"<div><div>Gradient structures fabricated using plastic deformation methods have been demonstrated to exhibit excellent fatigue performances. However, achieving an optimal gradient structure remains challenging because of methodological limitations. In this study, nickel plates with varying grain-size gradient structures (GSs) were synthesized in a controllable manner via direct-current electrodeposition. Fatigue tests revealed that the GS samples, ranging from coarse grains (CGs, 4 μm) to nano-grains (NGs, 40 nm), exhibited higher fatigue strengths compared to the homogeneous CG sample. Detailed observations showed that cracks were initiated in the surface layers of the GS samples, while severe plastic deformation was mitigated, demonstrating a superior co-deformation capability. An optimized structure with a linear hardness gradient ranging from 2.3 to 3.4 GPa and grain sizes ranging from CGs to ultrafine grains (UFGs, 170 nm) led to a further enhanced fatigue performance, achieving a fatigue limit of 325 MPa and a fatigue ratio of 0.38. This improved performance was attributed to the ability of the structure to disperse cyclic deformation and suppress stress concentration. These findings highlight the potential of controllably synthesized grain-size gradient structures to enhance the high-cycle fatigue properties of nickel plates.</div></div>","PeriodicalId":14112,"journal":{"name":"International Journal of Fatigue","volume":"198 ","pages":"Article 109018"},"PeriodicalIF":5.7000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fatigue","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142112325002154","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Gradient structures fabricated using plastic deformation methods have been demonstrated to exhibit excellent fatigue performances. However, achieving an optimal gradient structure remains challenging because of methodological limitations. In this study, nickel plates with varying grain-size gradient structures (GSs) were synthesized in a controllable manner via direct-current electrodeposition. Fatigue tests revealed that the GS samples, ranging from coarse grains (CGs, 4 μm) to nano-grains (NGs, 40 nm), exhibited higher fatigue strengths compared to the homogeneous CG sample. Detailed observations showed that cracks were initiated in the surface layers of the GS samples, while severe plastic deformation was mitigated, demonstrating a superior co-deformation capability. An optimized structure with a linear hardness gradient ranging from 2.3 to 3.4 GPa and grain sizes ranging from CGs to ultrafine grains (UFGs, 170 nm) led to a further enhanced fatigue performance, achieving a fatigue limit of 325 MPa and a fatigue ratio of 0.38. This improved performance was attributed to the ability of the structure to disperse cyclic deformation and suppress stress concentration. These findings highlight the potential of controllably synthesized grain-size gradient structures to enhance the high-cycle fatigue properties of nickel plates.
期刊介绍:
Typical subjects discussed in International Journal of Fatigue address:
Novel fatigue testing and characterization methods (new kinds of fatigue tests, critical evaluation of existing methods, in situ measurement of fatigue degradation, non-contact field measurements)
Multiaxial fatigue and complex loading effects of materials and structures, exploring state-of-the-art concepts in degradation under cyclic loading
Fatigue in the very high cycle regime, including failure mode transitions from surface to subsurface, effects of surface treatment, processing, and loading conditions
Modeling (including degradation processes and related driving forces, multiscale/multi-resolution methods, computational hierarchical and concurrent methods for coupled component and material responses, novel methods for notch root analysis, fracture mechanics, damage mechanics, crack growth kinetics, life prediction and durability, and prediction of stochastic fatigue behavior reflecting microstructure and service conditions)
Models for early stages of fatigue crack formation and growth that explicitly consider microstructure and relevant materials science aspects
Understanding the influence or manufacturing and processing route on fatigue degradation, and embedding this understanding in more predictive schemes for mitigation and design against fatigue
Prognosis and damage state awareness (including sensors, monitoring, methodology, interactive control, accelerated methods, data interpretation)
Applications of technologies associated with fatigue and their implications for structural integrity and reliability. This includes issues related to design, operation and maintenance, i.e., life cycle engineering
Smart materials and structures that can sense and mitigate fatigue degradation
Fatigue of devices and structures at small scales, including effects of process route and surfaces/interfaces.