MRLCD-A: Lag-aware alignment for multivariate time series forecasting in multiple scenarios

IF 7.4 1区 管理学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Dezhi Sun , Jiwei Qin , Zihao Zhang , Xizhong Qin , Huiguo Zhang
{"title":"MRLCD-A: Lag-aware alignment for multivariate time series forecasting in multiple scenarios","authors":"Dezhi Sun ,&nbsp;Jiwei Qin ,&nbsp;Zihao Zhang ,&nbsp;Xizhong Qin ,&nbsp;Huiguo Zhang","doi":"10.1016/j.ipm.2025.104191","DOIUrl":null,"url":null,"abstract":"<div><div>In multivariate time series forecasting tasks, the varying degrees of lag relationships among multivariate data significantly increase the complexity of accurate predictions. A model must effectively capture long-term dependencies and address intricate lag correlations to achieve reliable long-term forecasting. This paper proposes a novel Multivariate Rolling Lag Correlation Detection-Alignment (MRLCD-A) method to tackle these challenges. The method identifies rolling correlations, calculates lag distances in multivariate sequence inputs, and aligns the lagged variables accordingly. Multivariate Time Series (MTS) forecasting uses a Channel Dependency (CD) approach. Experiments on time series datasets across various scenarios, including electricity, weather, exchange rates, and atmospheric carbon concentrations, demonstrate that the proposed method outperforms state-of-the-art models in forecasting general multivariate time series and predicting long-term time series data in real-world environments.</div></div>","PeriodicalId":50365,"journal":{"name":"Information Processing & Management","volume":"62 5","pages":"Article 104191"},"PeriodicalIF":7.4000,"publicationDate":"2025-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing & Management","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306457325001323","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

In multivariate time series forecasting tasks, the varying degrees of lag relationships among multivariate data significantly increase the complexity of accurate predictions. A model must effectively capture long-term dependencies and address intricate lag correlations to achieve reliable long-term forecasting. This paper proposes a novel Multivariate Rolling Lag Correlation Detection-Alignment (MRLCD-A) method to tackle these challenges. The method identifies rolling correlations, calculates lag distances in multivariate sequence inputs, and aligns the lagged variables accordingly. Multivariate Time Series (MTS) forecasting uses a Channel Dependency (CD) approach. Experiments on time series datasets across various scenarios, including electricity, weather, exchange rates, and atmospheric carbon concentrations, demonstrate that the proposed method outperforms state-of-the-art models in forecasting general multivariate time series and predicting long-term time series data in real-world environments.
MRLCD-A:多场景下多变量时间序列预测的滞后感知对齐
在多变量时间序列预测任务中,多变量数据之间不同程度的滞后关系显著增加了准确预测的复杂性。模型必须有效地捕获长期依赖关系并处理复杂的滞后相关性,以实现可靠的长期预测。本文提出了一种新的多元滚动滞后相关检测对齐(MRLCD-A)方法来解决这些问题。该方法识别滚动相关性,计算多变量序列输入中的滞后距离,并相应地对齐滞后变量。多变量时间序列(MTS)预测使用通道依赖(CD)方法。在各种场景(包括电力、天气、汇率和大气碳浓度)的时间序列数据集上进行的实验表明,所提出的方法在预测一般多元时间序列和预测现实环境中的长期时间序列数据方面优于最先进的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Information Processing & Management
Information Processing & Management 工程技术-计算机:信息系统
CiteScore
17.00
自引率
11.60%
发文量
276
审稿时长
39 days
期刊介绍: Information Processing and Management is dedicated to publishing cutting-edge original research at the convergence of computing and information science. Our scope encompasses theory, methods, and applications across various domains, including advertising, business, health, information science, information technology marketing, and social computing. We aim to cater to the interests of both primary researchers and practitioners by offering an effective platform for the timely dissemination of advanced and topical issues in this interdisciplinary field. The journal places particular emphasis on original research articles, research survey articles, research method articles, and articles addressing critical applications of research. Join us in advancing knowledge and innovation at the intersection of computing and information science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信