{"title":"Indentation of axisymmetric rigid punch: Model implementation by a Python Algorithm","authors":"Krupal Patel , Etienne Barthel , Matteo Ciccotti","doi":"10.1016/j.enganabound.2025.106259","DOIUrl":null,"url":null,"abstract":"<div><div>We present a computationally efficient Python algorithm based on the Boundary Element Method (BEM) for frictionless linear elastic axisymmetric contact of coated solids. The algorithm solves indentation problems using conical, spherical, and cylindrical flat indenters, with results also reported for flat punch indentation on a soft-coated substrate. To validate BEM, we implement Finite Element Method (FEM) simulations, analyzing soft layers with Poisson ratios of 0.25, 0.4, and 0.49, aspect ratios from 0.25 to 10, and modulus mismatches of 10 and 100. BEM and FEM show good agreement for compressible soft layers but diverge as incompressibility increases. For Poisson’s ratio of 0.4999, BEM fails due to confinement effects. We verify FEM results using the Poker-chip test, confirming accuracy in highly confined, nearly incompressible cases. For compressible soft layer and large aspect ratios, we found good agreement between BEM and analytical result of Poker-chip test applicable in that regime.</div></div>","PeriodicalId":51039,"journal":{"name":"Engineering Analysis with Boundary Elements","volume":"177 ","pages":"Article 106259"},"PeriodicalIF":4.2000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Analysis with Boundary Elements","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S095579972500147X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We present a computationally efficient Python algorithm based on the Boundary Element Method (BEM) for frictionless linear elastic axisymmetric contact of coated solids. The algorithm solves indentation problems using conical, spherical, and cylindrical flat indenters, with results also reported for flat punch indentation on a soft-coated substrate. To validate BEM, we implement Finite Element Method (FEM) simulations, analyzing soft layers with Poisson ratios of 0.25, 0.4, and 0.49, aspect ratios from 0.25 to 10, and modulus mismatches of 10 and 100. BEM and FEM show good agreement for compressible soft layers but diverge as incompressibility increases. For Poisson’s ratio of 0.4999, BEM fails due to confinement effects. We verify FEM results using the Poker-chip test, confirming accuracy in highly confined, nearly incompressible cases. For compressible soft layer and large aspect ratios, we found good agreement between BEM and analytical result of Poker-chip test applicable in that regime.
期刊介绍:
This journal is specifically dedicated to the dissemination of the latest developments of new engineering analysis techniques using boundary elements and other mesh reduction methods.
Boundary element (BEM) and mesh reduction methods (MRM) are very active areas of research with the techniques being applied to solve increasingly complex problems. The journal stresses the importance of these applications as well as their computational aspects, reliability and robustness.
The main criteria for publication will be the originality of the work being reported, its potential usefulness and applications of the methods to new fields.
In addition to regular issues, the journal publishes a series of special issues dealing with specific areas of current research.
The journal has, for many years, provided a channel of communication between academics and industrial researchers working in mesh reduction methods
Fields Covered:
• Boundary Element Methods (BEM)
• Mesh Reduction Methods (MRM)
• Meshless Methods
• Integral Equations
• Applications of BEM/MRM in Engineering
• Numerical Methods related to BEM/MRM
• Computational Techniques
• Combination of Different Methods
• Advanced Formulations.