ProAttUnet: Advancing protein secondary structure prediction with deep learning via U-Net dual-pathway feature fusion and ESM2 pretrained protein language model
Long Cheng , Weizhong Lu , Yiyi Xia , Yiming Lu , Jiyun Shen , Zhiqiang Hui , Yixin Xu , Hongjie Wu , Jing Chen , Qiming Fu , You Lu
{"title":"ProAttUnet: Advancing protein secondary structure prediction with deep learning via U-Net dual-pathway feature fusion and ESM2 pretrained protein language model","authors":"Long Cheng , Weizhong Lu , Yiyi Xia , Yiming Lu , Jiyun Shen , Zhiqiang Hui , Yixin Xu , Hongjie Wu , Jing Chen , Qiming Fu , You Lu","doi":"10.1016/j.compbiolchem.2025.108429","DOIUrl":null,"url":null,"abstract":"<div><div>Protein secondary structure prediction remains a pivotal concern within the domain of bioinformatics. In this innovative research, we introduce a novel methodology to further enhance a protein prediction model grounded in single sequences. Our key contribution lies in integrating the state-of-the-art (SOTA) model ESM2, which hails from the field of universal protein language models. By leveraging ESM2, we are able to acquire residual embeddings and contact maps for the protein sequences under study. Regarding the model architecture, we employ a unique dual-way U-Net framework for effective feature fusion. This framework is complemented by the integration of a cross-attention mechanism, enabling the model to capture more comprehensive context information. Furthermore, In accordance with the distinctive characteristics of protein sequences, we incorporate a so-called GCU_SE module into both the encoder and the decoder components of the model. These innovative enhancements enable the ProAttUnet model to outperform the benchmark model SPOT-1D-Single by 1.6%, 3.5%, 1.0%, 4.6%, and 7.2% for ss3, and by 5.5%, 7.8%, 4.1%, 8.1%, and 10.1% for ss8 across five test sets (SPOT-2016, SPOT-2016-HQ, SPOT-2018, SPOT-2018-HQ and TEST2018, respectively). This significant improvement vividly demonstrates the effectiveness and novelty of our proposed model.</div></div>","PeriodicalId":10616,"journal":{"name":"Computational Biology and Chemistry","volume":"118 ","pages":"Article 108429"},"PeriodicalIF":2.6000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Biology and Chemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1476927125000891","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Protein secondary structure prediction remains a pivotal concern within the domain of bioinformatics. In this innovative research, we introduce a novel methodology to further enhance a protein prediction model grounded in single sequences. Our key contribution lies in integrating the state-of-the-art (SOTA) model ESM2, which hails from the field of universal protein language models. By leveraging ESM2, we are able to acquire residual embeddings and contact maps for the protein sequences under study. Regarding the model architecture, we employ a unique dual-way U-Net framework for effective feature fusion. This framework is complemented by the integration of a cross-attention mechanism, enabling the model to capture more comprehensive context information. Furthermore, In accordance with the distinctive characteristics of protein sequences, we incorporate a so-called GCU_SE module into both the encoder and the decoder components of the model. These innovative enhancements enable the ProAttUnet model to outperform the benchmark model SPOT-1D-Single by 1.6%, 3.5%, 1.0%, 4.6%, and 7.2% for ss3, and by 5.5%, 7.8%, 4.1%, 8.1%, and 10.1% for ss8 across five test sets (SPOT-2016, SPOT-2016-HQ, SPOT-2018, SPOT-2018-HQ and TEST2018, respectively). This significant improvement vividly demonstrates the effectiveness and novelty of our proposed model.
期刊介绍:
Computational Biology and Chemistry publishes original research papers and review articles in all areas of computational life sciences. High quality research contributions with a major computational component in the areas of nucleic acid and protein sequence research, molecular evolution, molecular genetics (functional genomics and proteomics), theory and practice of either biology-specific or chemical-biology-specific modeling, and structural biology of nucleic acids and proteins are particularly welcome. Exceptionally high quality research work in bioinformatics, systems biology, ecology, computational pharmacology, metabolism, biomedical engineering, epidemiology, and statistical genetics will also be considered.
Given their inherent uncertainty, protein modeling and molecular docking studies should be thoroughly validated. In the absence of experimental results for validation, the use of molecular dynamics simulations along with detailed free energy calculations, for example, should be used as complementary techniques to support the major conclusions. Submissions of premature modeling exercises without additional biological insights will not be considered.
Review articles will generally be commissioned by the editors and should not be submitted to the journal without explicit invitation. However prospective authors are welcome to send a brief (one to three pages) synopsis, which will be evaluated by the editors.