{"title":"Epigoitrin decreases synaptosomal glutamate release and protects neurons from glutamate excitotoxicity in rats","authors":"Yi Chang , Wun-Jing Pan , Su-Jane Wang","doi":"10.1016/j.ejphar.2025.177654","DOIUrl":null,"url":null,"abstract":"<div><div>Excessive synaptic glutamate levels can lead to excitotoxicity, which is implicated in various neuropathologies. This study investigates whether epigoitrin, an alkaloid abundantly found in Radix isatidis, affects glutamate release in rat cortical nerve terminals (synaptosomes) and its impact on excitotoxicity induced by the glutamate analogue kainic acid in rats. In rat cortical synaptosomes, epigoitrin reduced glutamate release induced by 4-aminopyridine in a dose-dependent manner, with an IC<sub>50</sub> value of 3 μM. Removal of extracellular Ca<sup>2+</sup> or blockade of P/Q-type Ca<sup>2+</sup> channels prevented epigoitrin's effect on synaptosomal glutamate release, while the N-type Ca<sup>2+</sup> channel inhibitor did not. In an in vivo rat model of glutamate excitotoxicity induced by kainic acid, epigoitrin pretreatment significantly mitigated neuronal injury, glutamate elevation, and the upregulation of excitotoxicity-related proteins (DAPK1 and NMDA receptor subunit GluN2B) in the cortex of kainic acid-treated rats. Additionally, epigoitrin pretreatment reduced reactive oxygen species (ROS) production, glial activation, and levels of inflammatory cytokines (tumor necrosis factor-α, interleukin-1β, and interleukin-6), while increasing the anti-inflammatory cytokine interleutin-10 in the cortex of kainic acid-treated rats. These results suggest that epigoitrin inhibits glutamate release from cortical synaptosomes by reducing P/Q-type Ca<sup>2+</sup> channel activity and provides neuroprotection against kainic acid-induced neurotoxicity by preventing oxidative stress, neuroinflammation, and glutamate elevation. This study is the first to reveal the impact of epigoitrin on the glutamatergic system.</div></div>","PeriodicalId":12004,"journal":{"name":"European journal of pharmacology","volume":"998 ","pages":"Article 177654"},"PeriodicalIF":4.2000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European journal of pharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S001429992500408X","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Excessive synaptic glutamate levels can lead to excitotoxicity, which is implicated in various neuropathologies. This study investigates whether epigoitrin, an alkaloid abundantly found in Radix isatidis, affects glutamate release in rat cortical nerve terminals (synaptosomes) and its impact on excitotoxicity induced by the glutamate analogue kainic acid in rats. In rat cortical synaptosomes, epigoitrin reduced glutamate release induced by 4-aminopyridine in a dose-dependent manner, with an IC50 value of 3 μM. Removal of extracellular Ca2+ or blockade of P/Q-type Ca2+ channels prevented epigoitrin's effect on synaptosomal glutamate release, while the N-type Ca2+ channel inhibitor did not. In an in vivo rat model of glutamate excitotoxicity induced by kainic acid, epigoitrin pretreatment significantly mitigated neuronal injury, glutamate elevation, and the upregulation of excitotoxicity-related proteins (DAPK1 and NMDA receptor subunit GluN2B) in the cortex of kainic acid-treated rats. Additionally, epigoitrin pretreatment reduced reactive oxygen species (ROS) production, glial activation, and levels of inflammatory cytokines (tumor necrosis factor-α, interleukin-1β, and interleukin-6), while increasing the anti-inflammatory cytokine interleutin-10 in the cortex of kainic acid-treated rats. These results suggest that epigoitrin inhibits glutamate release from cortical synaptosomes by reducing P/Q-type Ca2+ channel activity and provides neuroprotection against kainic acid-induced neurotoxicity by preventing oxidative stress, neuroinflammation, and glutamate elevation. This study is the first to reveal the impact of epigoitrin on the glutamatergic system.
期刊介绍:
The European Journal of Pharmacology publishes research papers covering all aspects of experimental pharmacology with focus on the mechanism of action of structurally identified compounds affecting biological systems.
The scope includes:
Behavioural pharmacology
Neuropharmacology and analgesia
Cardiovascular pharmacology
Pulmonary, gastrointestinal and urogenital pharmacology
Endocrine pharmacology
Immunopharmacology and inflammation
Molecular and cellular pharmacology
Regenerative pharmacology
Biologicals and biotherapeutics
Translational pharmacology
Nutriceutical pharmacology.