Wanling Li , Xin Zou , Jie Zhang , Minghong Hu , Guanfeng Chen , Shanshan Su
{"title":"Predicting lung cancer bone metastasis using CT and pathological imaging with a Swin Transformer model","authors":"Wanling Li , Xin Zou , Jie Zhang , Minghong Hu , Guanfeng Chen , Shanshan Su","doi":"10.1016/j.jbo.2025.100681","DOIUrl":null,"url":null,"abstract":"<div><div>Bone metastasis is a common and serious complication in lung cancer patients, leading to severe pain, pathological fractures, and reduced quality of life. Early prediction of bone metastasis can enable timely interventions and improve patient outcomes. In this study, we developed a multimodal Swin Transformer-based deep learning model for predicting bone metastasis risk in lung cancer patients by integrating CT imaging and pathological data. A total of 215 patients with confirmed lung cancer diagnoses, including those with and without bone metastasis, were included. The model was designed to process high-resolution CT images and digitized histopathological images, with the features extracted independently by two Swin Transformer networks. These features were then fused using decision-level fusion techniques to improve classification accuracy. The Swin-Dual Fusion Model achieved superior performance compared to single-modality models and conventional architectures such as ResNet50, with an AUC of 0.966 on the test data and 0.967 on the training data. This integrated model demonstrated high accuracy, sensitivity, and specificity, making it a promising tool for clinical application in predicting bone metastasis risk. The study emphasizes the potential of transformer-based models to revolutionize bone oncology through advanced multimodal analysis and early prediction of metastasis, ultimately improving patient care and treatment outcomes.</div></div>","PeriodicalId":48806,"journal":{"name":"Journal of Bone Oncology","volume":"52 ","pages":"Article 100681"},"PeriodicalIF":3.4000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bone Oncology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212137425000223","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Bone metastasis is a common and serious complication in lung cancer patients, leading to severe pain, pathological fractures, and reduced quality of life. Early prediction of bone metastasis can enable timely interventions and improve patient outcomes. In this study, we developed a multimodal Swin Transformer-based deep learning model for predicting bone metastasis risk in lung cancer patients by integrating CT imaging and pathological data. A total of 215 patients with confirmed lung cancer diagnoses, including those with and without bone metastasis, were included. The model was designed to process high-resolution CT images and digitized histopathological images, with the features extracted independently by two Swin Transformer networks. These features were then fused using decision-level fusion techniques to improve classification accuracy. The Swin-Dual Fusion Model achieved superior performance compared to single-modality models and conventional architectures such as ResNet50, with an AUC of 0.966 on the test data and 0.967 on the training data. This integrated model demonstrated high accuracy, sensitivity, and specificity, making it a promising tool for clinical application in predicting bone metastasis risk. The study emphasizes the potential of transformer-based models to revolutionize bone oncology through advanced multimodal analysis and early prediction of metastasis, ultimately improving patient care and treatment outcomes.
期刊介绍:
The Journal of Bone Oncology is a peer-reviewed international journal aimed at presenting basic, translational and clinical high-quality research related to bone and cancer.
As the first journal dedicated to cancer induced bone diseases, JBO welcomes original research articles, review articles, editorials and opinion pieces. Case reports will only be considered in exceptional circumstances and only when accompanied by a comprehensive review of the subject.
The areas covered by the journal include:
Bone metastases (pathophysiology, epidemiology, diagnostics, clinical features, prevention, treatment)
Preclinical models of metastasis
Bone microenvironment in cancer (stem cell, bone cell and cancer interactions)
Bone targeted therapy (pharmacology, therapeutic targets, drug development, clinical trials, side-effects, outcome research, health economics)
Cancer treatment induced bone loss (epidemiology, pathophysiology, prevention and management)
Bone imaging (clinical and animal, skeletal interventional radiology)
Bone biomarkers (clinical and translational applications)
Radiotherapy and radio-isotopes
Skeletal complications
Bone pain (mechanisms and management)
Orthopaedic cancer surgery
Primary bone tumours
Clinical guidelines
Multidisciplinary care
Keywords: bisphosphonate, bone, breast cancer, cancer, CTIBL, denosumab, metastasis, myeloma, osteoblast, osteoclast, osteooncology, osteo-oncology, prostate cancer, skeleton, tumour.