Fast blind image deblurring via patch-wise maximum content-weighted prior

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Zheng Guo , Wei Yan , Zirui Zhang, Zhixiang Wu, Zhenhua Xu, Chunyong Wang, Jiancheng Lai, Zhenhua Li
{"title":"Fast blind image deblurring via patch-wise maximum content-weighted prior","authors":"Zheng Guo ,&nbsp;Wei Yan ,&nbsp;Zirui Zhang,&nbsp;Zhixiang Wu,&nbsp;Zhenhua Xu,&nbsp;Chunyong Wang,&nbsp;Jiancheng Lai,&nbsp;Zhenhua Li","doi":"10.1016/j.neucom.2025.130267","DOIUrl":null,"url":null,"abstract":"<div><div>Blind image deblurring aims to derive the kernel and corresponding clear version solely from blurred images. This paper introduces an innovative blind image deblurring method based on the patch-wise maximum content-weighted prior (<em>PMCW</em>). Our work originates from the intuitive observation that the maximum content-weighted value of non-overlapping patches will significantly decrease after blurring degradation, which we demonstrate both mathematically and empirically. Building upon this observation, we propose a novel blind deblurring model combining <span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>-regularized <em>PMCW</em> and <span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>-regularized gradient prior, and develop an efficient solution algorithm utilizing projected alternating minimization (PAM). Qualitative and quantitative evaluation results on multiple benchmark datasets indicate that our proposed model achieves optimal performance, surpassing state-of-the-art algorithms in solving efficiency and various quantitative metrics.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"639 ","pages":"Article 130267"},"PeriodicalIF":5.5000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231225009397","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Blind image deblurring aims to derive the kernel and corresponding clear version solely from blurred images. This paper introduces an innovative blind image deblurring method based on the patch-wise maximum content-weighted prior (PMCW). Our work originates from the intuitive observation that the maximum content-weighted value of non-overlapping patches will significantly decrease after blurring degradation, which we demonstrate both mathematically and empirically. Building upon this observation, we propose a novel blind deblurring model combining L0-regularized PMCW and L0-regularized gradient prior, and develop an efficient solution algorithm utilizing projected alternating minimization (PAM). Qualitative and quantitative evaluation results on multiple benchmark datasets indicate that our proposed model achieves optimal performance, surpassing state-of-the-art algorithms in solving efficiency and various quantitative metrics.
快速盲图像去模糊通过补丁最大内容加权先验
盲图像去模糊的目的是单纯从模糊的图像中得到内核和相应的清晰版本。提出了一种基于逐块最大内容加权先验(PMCW)的图像去模糊方法。我们的工作源于直观的观察,即在模糊退化后,非重叠斑块的最大内容加权值将显着降低,我们在数学和经验上都证明了这一点。在此基础上,我们提出了一种结合l0正则化PMCW和l0正则化梯度先验的新型盲去模糊模型,并开发了一种利用投影交替最小化(PAM)的高效解算法。在多个基准数据集上的定性和定量评估结果表明,我们提出的模型达到了最佳性能,在求解效率和各种定量指标方面超过了最先进的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信