Leveraging GPT-4 enables patient comprehension of radiology reports

IF 3.2 3区 医学 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
M.H.Elise van Driel , Noa Blok , Jan A.J.G. van den Brand , Davy van de Sande , Marianne de Vries , Bram Eijlers , Fokko Smits , Jacob J. Visser , Diederik Gommers , Cornelis Verhoef , Michel E. van Genderen , Dirk J. Grünhagen , Denise E. Hilling
{"title":"Leveraging GPT-4 enables patient comprehension of radiology reports","authors":"M.H.Elise van Driel ,&nbsp;Noa Blok ,&nbsp;Jan A.J.G. van den Brand ,&nbsp;Davy van de Sande ,&nbsp;Marianne de Vries ,&nbsp;Bram Eijlers ,&nbsp;Fokko Smits ,&nbsp;Jacob J. Visser ,&nbsp;Diederik Gommers ,&nbsp;Cornelis Verhoef ,&nbsp;Michel E. van Genderen ,&nbsp;Dirk J. Grünhagen ,&nbsp;Denise E. Hilling","doi":"10.1016/j.ejrad.2025.112111","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>To assess the feasibility of using GPT-4 to simplify radiology reports into B1-level Dutch for enhanced patient comprehension.</div></div><div><h3>Methods</h3><div>This study utilised GPT-4, optimised through prompt engineering in Microsoft Azure. The researchers iteratively refined prompts to ensure accurate and comprehensive translations of radiology reports. Two radiologists assessed the simplified outputs for accuracy, completeness, and patient suitability. A third radiologist independently validated the final versions. Twelve colorectal cancer patients were recruited from two hospitals in the Netherlands. Semi-structured interviews were conducted to evaluate patients’ comprehension and satisfaction with AI-generated reports.</div></div><div><h3>Results</h3><div>The optimised GPT-4 tool produced simplified reports with high accuracy (mean score 3.33/4). Patient comprehension improved significantly from 2.00 (original reports) to 3.28 (simplified reports) and 3.50 (summaries). Correct classification of report outcomes increased from 63.9% to 83.3%. Patient satisfaction was high (mean 8.30/10), with most preferring the long simplified report.</div></div><div><h3>Conclusion</h3><div>RADiANT successfully enhances patient understanding and satisfaction through automated AI-driven report simplification, offering a scalable solution for patient-centred communication in clinical practice. This tool reduces clinician workload and supports informed patient decision-making, demonstrating the potential of LLMs beyond English-based healthcare contexts.</div></div>","PeriodicalId":12063,"journal":{"name":"European Journal of Radiology","volume":"187 ","pages":"Article 112111"},"PeriodicalIF":3.2000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Radiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0720048X25001974","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Objective

To assess the feasibility of using GPT-4 to simplify radiology reports into B1-level Dutch for enhanced patient comprehension.

Methods

This study utilised GPT-4, optimised through prompt engineering in Microsoft Azure. The researchers iteratively refined prompts to ensure accurate and comprehensive translations of radiology reports. Two radiologists assessed the simplified outputs for accuracy, completeness, and patient suitability. A third radiologist independently validated the final versions. Twelve colorectal cancer patients were recruited from two hospitals in the Netherlands. Semi-structured interviews were conducted to evaluate patients’ comprehension and satisfaction with AI-generated reports.

Results

The optimised GPT-4 tool produced simplified reports with high accuracy (mean score 3.33/4). Patient comprehension improved significantly from 2.00 (original reports) to 3.28 (simplified reports) and 3.50 (summaries). Correct classification of report outcomes increased from 63.9% to 83.3%. Patient satisfaction was high (mean 8.30/10), with most preferring the long simplified report.

Conclusion

RADiANT successfully enhances patient understanding and satisfaction through automated AI-driven report simplification, offering a scalable solution for patient-centred communication in clinical practice. This tool reduces clinician workload and supports informed patient decision-making, demonstrating the potential of LLMs beyond English-based healthcare contexts.
利用GPT-4使患者能够理解放射学报告
目的评价使用GPT-4将放射学报告简化为b1荷兰语的可行性,以提高患者的理解力。方法本研究采用GPT-4,在Microsoft Azure中进行提示工程优化。研究人员反复改进提示,以确保准确和全面的放射学报告翻译。两名放射科医生评估了简化后的输出结果的准确性、完整性和患者适用性。第三位放射科医生独立验证了最终版本。从荷兰的两家医院招募了12名结直肠癌患者。进行半结构化访谈,以评估患者对人工智能生成报告的理解程度和满意度。结果优化后的GPT-4工具报告简化,准确率高(平均评分3.33/4)。患者的理解力从2.00(原始报告)显著提高到3.28(简化报告)和3.50(总结)。报告结果的正确分类从63.9%增加到83.3%。患者满意度高(平均8.30/10),大多数人更喜欢冗长的简化报告。结论:通过人工智能驱动的自动化报告简化,radiant成功地提高了患者的理解和满意度,为临床实践中以患者为中心的沟通提供了可扩展的解决方案。该工具减少了临床医生的工作量,并支持知情的患者决策,展示了法学硕士在基于英语的医疗保健环境之外的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.70
自引率
3.00%
发文量
398
审稿时长
42 days
期刊介绍: European Journal of Radiology is an international journal which aims to communicate to its readers, state-of-the-art information on imaging developments in the form of high quality original research articles and timely reviews on current developments in the field. Its audience includes clinicians at all levels of training including radiology trainees, newly qualified imaging specialists and the experienced radiologist. Its aim is to inform efficient, appropriate and evidence-based imaging practice to the benefit of patients worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信