Ryan Guilbert,Maxime Couturier,Yuanyuan Si,Daniel O' Donovan,David Longmire,Hazel Mak,Paul Clarkson,Argyrides Argyrou
{"title":"A high throughput compatible workflow for the biochemical identification and characterisation of molecular glues.","authors":"Ryan Guilbert,Maxime Couturier,Yuanyuan Si,Daniel O' Donovan,David Longmire,Hazel Mak,Paul Clarkson,Argyrides Argyrou","doi":"10.1016/j.jbc.2025.108526","DOIUrl":null,"url":null,"abstract":"Molecular glues are an emerging modality which induces or enhances an interaction between two proteins. Molecular glues can target proteins via proximity-induced degradation or sequestration and can, therefore, provide opportunities for therapeutic intervention to targets that cannot be modulated by traditional small molecule approaches. Due to their modest molecular weight, molecular glues may not encounter the bioavailability issues associated with PROTACs. Characterisation of molecular glues in hit finding and hit optimisation settings can be challenging, as both the affinity of the glue for the target protein and the resulting improvement in affinity between the proteins of interest need to be assessed in parallel. Here, we propose and validate a workflow to derive both key parameters from a classic concentration response experiment. Furthermore, we provide a method for the rational determination of optimum biochemical assay conditions to identify and characterise molecular glues.","PeriodicalId":15140,"journal":{"name":"Journal of Biological Chemistry","volume":"8 1","pages":"108526"},"PeriodicalIF":4.0000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Chemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jbc.2025.108526","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Molecular glues are an emerging modality which induces or enhances an interaction between two proteins. Molecular glues can target proteins via proximity-induced degradation or sequestration and can, therefore, provide opportunities for therapeutic intervention to targets that cannot be modulated by traditional small molecule approaches. Due to their modest molecular weight, molecular glues may not encounter the bioavailability issues associated with PROTACs. Characterisation of molecular glues in hit finding and hit optimisation settings can be challenging, as both the affinity of the glue for the target protein and the resulting improvement in affinity between the proteins of interest need to be assessed in parallel. Here, we propose and validate a workflow to derive both key parameters from a classic concentration response experiment. Furthermore, we provide a method for the rational determination of optimum biochemical assay conditions to identify and characterise molecular glues.
期刊介绍:
The Journal of Biological Chemistry welcomes high-quality science that seeks to elucidate the molecular and cellular basis of biological processes. Papers published in JBC can therefore fall under the umbrellas of not only biological chemistry, chemical biology, or biochemistry, but also allied disciplines such as biophysics, systems biology, RNA biology, immunology, microbiology, neurobiology, epigenetics, computational biology, ’omics, and many more. The outcome of our focus on papers that contribute novel and important mechanistic insights, rather than on a particular topic area, is that JBC is truly a melting pot for scientists across disciplines. In addition, JBC welcomes papers that describe methods that will help scientists push their biochemical inquiries forward and resources that will be of use to the research community.