{"title":"Uncovering the Molecular Landscape of Tetracycline Family Natural Products through Bacterial Genome Mining","authors":"Haiyan Wang, Lijun Wang, Dong Li, Keqiang Fan, Yingzhe Yang, Haolan Cao, Jianing Sun, Jinwei Ren, Yao Liu, Lijun Xiang, Weishu Li, Minghui Pan, Huitao Hu, Yihua Chen, Zhengren Xu, Ying Huang, Weishan Wang, Guohui Pan","doi":"10.1021/jacs.4c17551","DOIUrl":null,"url":null,"abstract":"Tetracycline (TC) family natural products have attracted significant attention due to their diverse chemical structures and important role in drug development. As one of the most successful classes of drugs, TC antibiotics have been used clinically for over 70 years and remain crucial in treating infections. Despite their importance, systematic exploration of novel TC natural products has been limited, leaving the molecular landscape of the TC family poorly understood and hindering further development of these compounds for therapeutic applications. Here, we developed a targeted strategy to identify TC biosynthetic gene clusters (BGCs) based on specific cyclase signatures involved in assembling the TC scaffold. This led to the discovery of 82 representative BGCs with the potential to produce structurally diverse TCs. Among them, we uncovered three groups of novel natural products─misiomycins, varsomycins, and hibarimicins J–L─and identified their biosynthetic pathways. These compounds display distinctive structural features, with misiomycin A and hibarimicin L among the most highly modified TCs identified to date. Misiomycin A biosynthesis involves extensive glycosylation, while biosynthesis of varsomycin A, featuring a unique six-membered lactone ring structure, requires the coordinated action of two TC BGCs. The biosynthesis of hibarimicins J–L, derived from TC monomer dimerization, undergoes complex oxidative modifications involving seven oxygenases. Several TCs exhibited potent activity against drug-resistant Gram-positive pathogens. Our work further expands the structural diversity within the TC family and underscores the potential of these BGCs for generating new TC structures, providing valuable insights for the discovery and development of novel TC-based therapeutics.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"5 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c17551","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Tetracycline (TC) family natural products have attracted significant attention due to their diverse chemical structures and important role in drug development. As one of the most successful classes of drugs, TC antibiotics have been used clinically for over 70 years and remain crucial in treating infections. Despite their importance, systematic exploration of novel TC natural products has been limited, leaving the molecular landscape of the TC family poorly understood and hindering further development of these compounds for therapeutic applications. Here, we developed a targeted strategy to identify TC biosynthetic gene clusters (BGCs) based on specific cyclase signatures involved in assembling the TC scaffold. This led to the discovery of 82 representative BGCs with the potential to produce structurally diverse TCs. Among them, we uncovered three groups of novel natural products─misiomycins, varsomycins, and hibarimicins J–L─and identified their biosynthetic pathways. These compounds display distinctive structural features, with misiomycin A and hibarimicin L among the most highly modified TCs identified to date. Misiomycin A biosynthesis involves extensive glycosylation, while biosynthesis of varsomycin A, featuring a unique six-membered lactone ring structure, requires the coordinated action of two TC BGCs. The biosynthesis of hibarimicins J–L, derived from TC monomer dimerization, undergoes complex oxidative modifications involving seven oxygenases. Several TCs exhibited potent activity against drug-resistant Gram-positive pathogens. Our work further expands the structural diversity within the TC family and underscores the potential of these BGCs for generating new TC structures, providing valuable insights for the discovery and development of novel TC-based therapeutics.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.