HOT: An Efficient Halpern Accelerating Algorithm for Optimal Transport Problems

IF 18.6
Guojun Zhang;Zhexuan Gu;Yancheng Yuan;Defeng Sun
{"title":"HOT: An Efficient Halpern Accelerating Algorithm for Optimal Transport Problems","authors":"Guojun Zhang;Zhexuan Gu;Yancheng Yuan;Defeng Sun","doi":"10.1109/TPAMI.2025.3564353","DOIUrl":null,"url":null,"abstract":"This paper proposes an efficient HOT algorithm for solving the optimal transport (OT) problems with finite supports. We particularly focus on an efficient implementation of the HOT algorithm for the case where the supports are in <inline-formula><tex-math>$\\mathbb {R}^{2}$</tex-math></inline-formula> with ground distances calculated by <inline-formula><tex-math>$L_{2}^{2}$</tex-math></inline-formula>-norm. Specifically, we design a Halpern accelerating algorithm to solve the equivalent reduced model of the discrete OT problem. Moreover, we derive a novel procedure to solve the involved linear systems in the HOT algorithm in linear time complexity. Consequently, we can obtain an <inline-formula><tex-math>$\\varepsilon$</tex-math></inline-formula>-approximate solution to the optimal transport problem with <inline-formula><tex-math>$M$</tex-math></inline-formula> supports in <inline-formula><tex-math>$O(M^{1.5}/\\varepsilon )$</tex-math></inline-formula> flops, which significantly improves the best-known computational complexity. We further propose an efficient procedure to recover an optimal transport plan for the original OT problem based on a solution to the reduced model, thereby overcoming the limitations of the reduced OT model in applications that require the transport plan. We implement the HOT algorithm in PyTorch and extensive numerical results show the superior performance of the HOT algorithm compared to existing state-of-the-art algorithms for solving the OT problems.","PeriodicalId":94034,"journal":{"name":"IEEE transactions on pattern analysis and machine intelligence","volume":"47 8","pages":"6703-6714"},"PeriodicalIF":18.6000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on pattern analysis and machine intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10976595/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes an efficient HOT algorithm for solving the optimal transport (OT) problems with finite supports. We particularly focus on an efficient implementation of the HOT algorithm for the case where the supports are in $\mathbb {R}^{2}$ with ground distances calculated by $L_{2}^{2}$-norm. Specifically, we design a Halpern accelerating algorithm to solve the equivalent reduced model of the discrete OT problem. Moreover, we derive a novel procedure to solve the involved linear systems in the HOT algorithm in linear time complexity. Consequently, we can obtain an $\varepsilon$-approximate solution to the optimal transport problem with $M$ supports in $O(M^{1.5}/\varepsilon )$ flops, which significantly improves the best-known computational complexity. We further propose an efficient procedure to recover an optimal transport plan for the original OT problem based on a solution to the reduced model, thereby overcoming the limitations of the reduced OT model in applications that require the transport plan. We implement the HOT algorithm in PyTorch and extensive numerical results show the superior performance of the HOT algorithm compared to existing state-of-the-art algorithms for solving the OT problems.
求解最优运输问题的高效Halpern加速算法
本文提出了一种求解有限支持下最优传输问题的高效HOT算法。我们特别关注HOT算法的有效实现,在这种情况下,支持在$\mathbb {R}^{2}$中,地面距离由$L_{2}^{2}$-norm计算。具体来说,我们设计了一种Halpern加速算法来求解离散OT问题的等效简化模型。此外,我们还推导出一种新的求解HOT算法中线性时间复杂度下所涉及的线性系统的方法。因此,我们可以在$O(M^{1.5}/\varepsilon)$ flops中获得$M$支持的最优传输问题的$\varepsilon$-近似解,这显着提高了众所周知的计算复杂度。我们进一步提出了一种基于简化模型解的有效程序,以恢复原始OT问题的最优运输计划,从而克服了简化OT模型在需要运输计划的应用中的局限性。我们在PyTorch中实现了HOT算法,大量的数值结果表明,与现有的最先进的算法相比,HOT算法在解决OT问题方面具有优越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信