Jinu Thomas, Debshikha Banerjee, Alberto Nocera, Steven Johnston
{"title":"Theory of Electron-Phonon Interactions in Extended Correlated Systems Probed by Resonant Inelastic X-Ray Scattering","authors":"Jinu Thomas, Debshikha Banerjee, Alberto Nocera, Steven Johnston","doi":"10.1103/physrevx.15.021030","DOIUrl":null,"url":null,"abstract":"An emerging application of resonant inelastic x-ray scattering (RIXS) is the study of lattice excitations and electron-phonon (e</a:mi></a:math>-ph) interactions in quantum materials. Despite the growing importance of this area of research, the community lacks a complete understanding of how the RIXS process excites the lattice and how these excitations encode information about the <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:mi>e</c:mi></c:math>-ph interactions. Here, we present a detailed study of the RIXS spectra of the Hubbard-Holstein model defined on extended one-dimensional lattices. Using the density matrix renormalization group method, we compute the RIXS response while treating the electron mobility, many-body interactions, and core-hole interactions on an equal footing. The predicted spectra exhibit notable differences from those obtained using the commonly adopted Lang-Firsov models, with important implications for analyzing past and future experiments. Our results provide a deeper understanding of how RIXS probes <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:mi>e</e:mi></e:math>-ph interactions and set the stage for a more realistic analysis of future experiments. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"8 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevx.15.021030","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
An emerging application of resonant inelastic x-ray scattering (RIXS) is the study of lattice excitations and electron-phonon (e-ph) interactions in quantum materials. Despite the growing importance of this area of research, the community lacks a complete understanding of how the RIXS process excites the lattice and how these excitations encode information about the e-ph interactions. Here, we present a detailed study of the RIXS spectra of the Hubbard-Holstein model defined on extended one-dimensional lattices. Using the density matrix renormalization group method, we compute the RIXS response while treating the electron mobility, many-body interactions, and core-hole interactions on an equal footing. The predicted spectra exhibit notable differences from those obtained using the commonly adopted Lang-Firsov models, with important implications for analyzing past and future experiments. Our results provide a deeper understanding of how RIXS probes e-ph interactions and set the stage for a more realistic analysis of future experiments. Published by the American Physical Society2025
期刊介绍:
Physical Review X (PRX) stands as an exclusively online, fully open-access journal, emphasizing innovation, quality, and enduring impact in the scientific content it disseminates. Devoted to showcasing a curated selection of papers from pure, applied, and interdisciplinary physics, PRX aims to feature work with the potential to shape current and future research while leaving a lasting and profound impact in their respective fields. Encompassing the entire spectrum of physics subject areas, PRX places a special focus on groundbreaking interdisciplinary research with broad-reaching influence.