DBMGNet: A Dual-Branch Mamba-GCN Network for Hyperspectral Image Classification

IF 8.6 1区 地球科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Hao Wang;Peixian Zhuang;Xiaochen Zhang;Jiangyun Li
{"title":"DBMGNet: A Dual-Branch Mamba-GCN Network for Hyperspectral Image Classification","authors":"Hao Wang;Peixian Zhuang;Xiaochen Zhang;Jiangyun Li","doi":"10.1109/TGRS.2025.3564364","DOIUrl":null,"url":null,"abstract":"In hyperspectral image (HSI) classification, convolutional neural networks (CNNs) excel at local feature modeling but are limited to Euclidean space. Transformers offer long-range dependence modeling but suffer from high computational complexity. In contrast, graph convolutional networks (GCNs) can process information in non-Euclidean space, compensating for the limitations of CNNs. Meanwhile, the state-space model (SSM) Mamba, thanks to its linear complexity and strong long-range dependence modeling, shows great potential to offer an alternative to Transformers for HSI classification. To address the limitations of CNNs and Transformers while exploiting the potential of Mamba, we propose a dual-branch hybrid architecture named DBMGNet that combines Mamba with GCN for the HSI classification. In the Mamba branch, we design band selection enhanced bidirectional Mamba (BSEBM), which leverages Mamba’s long-range dependence modeling and sequential modeling capabilities to process spatial-spectral information. In the GCN branch, we apply reparameterized Chebyshev graph convolution (RCGC) to model similarity dependencies in non-Euclidean space, along with designing an adjacency matrix based on the intrinsic characteristics of HSIs. Extensive experiments demonstrate that our DBMGNet achieves the state-of-the-art performance of HSI classification against 13 mainstream approaches. The code for this work will be available at: <uri>https://github.com/Wanghao00pro/DBMGNet</uri>","PeriodicalId":13213,"journal":{"name":"IEEE Transactions on Geoscience and Remote Sensing","volume":"63 ","pages":"1-17"},"PeriodicalIF":8.6000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Geoscience and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10976709/","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In hyperspectral image (HSI) classification, convolutional neural networks (CNNs) excel at local feature modeling but are limited to Euclidean space. Transformers offer long-range dependence modeling but suffer from high computational complexity. In contrast, graph convolutional networks (GCNs) can process information in non-Euclidean space, compensating for the limitations of CNNs. Meanwhile, the state-space model (SSM) Mamba, thanks to its linear complexity and strong long-range dependence modeling, shows great potential to offer an alternative to Transformers for HSI classification. To address the limitations of CNNs and Transformers while exploiting the potential of Mamba, we propose a dual-branch hybrid architecture named DBMGNet that combines Mamba with GCN for the HSI classification. In the Mamba branch, we design band selection enhanced bidirectional Mamba (BSEBM), which leverages Mamba’s long-range dependence modeling and sequential modeling capabilities to process spatial-spectral information. In the GCN branch, we apply reparameterized Chebyshev graph convolution (RCGC) to model similarity dependencies in non-Euclidean space, along with designing an adjacency matrix based on the intrinsic characteristics of HSIs. Extensive experiments demonstrate that our DBMGNet achieves the state-of-the-art performance of HSI classification against 13 mainstream approaches. The code for this work will be available at: https://github.com/Wanghao00pro/DBMGNet
DBMGNet:用于高光谱图像分类的双分支Mamba-GCN网络
在高光谱图像(HSI)分类中,卷积神经网络(cnn)擅长局部特征建模,但受欧几里得空间的限制。变压器提供了远程依赖建模,但计算复杂度高。相比之下,图卷积网络(GCNs)可以在非欧几里得空间中处理信息,弥补了cnn的局限性。同时,状态空间模型(SSM) Mamba由于其线性复杂性和强大的远程依赖建模,显示出巨大的潜力,为HSI分类提供了一种替代transformer的方法。为了解决cnn和transformer的局限性,同时利用Mamba的潜力,我们提出了一个名为DBMGNet的双分支混合架构,它将Mamba和GCN结合起来用于HSI分类。在曼巴分支中,我们设计了波段选择增强双向曼巴(BSEBM),它利用曼巴的远程依赖建模和顺序建模能力来处理空间光谱信息。在GCN分支中,我们应用重参数化Chebyshev图卷积(RCGC)对非欧几里得空间中的相似性依赖进行建模,并基于hsi的固有特征设计邻接矩阵。大量的实验表明,我们的DBMGNet在13种主流方法中实现了最先进的HSI分类性能。这项工作的代码可以在https://github.com/Wanghao00pro/DBMGNet上找到
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Geoscience and Remote Sensing
IEEE Transactions on Geoscience and Remote Sensing 工程技术-地球化学与地球物理
CiteScore
11.50
自引率
28.00%
发文量
1912
审稿时长
4.0 months
期刊介绍: IEEE Transactions on Geoscience and Remote Sensing (TGRS) is a monthly publication that focuses on the theory, concepts, and techniques of science and engineering as applied to sensing the land, oceans, atmosphere, and space; and the processing, interpretation, and dissemination of this information.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信