Resource-Efficient Anomaly Detection in Industrial Control Systems With Quantized Recurrent Variational Autoencoder

IF 2.5 Q2 ENGINEERING, INDUSTRIAL
Daniel Fährmann, Malte Ihlefeld, Arjan Kuijper, Naser Damer
{"title":"Resource-Efficient Anomaly Detection in Industrial Control Systems With Quantized Recurrent Variational Autoencoder","authors":"Daniel Fährmann,&nbsp;Malte Ihlefeld,&nbsp;Arjan Kuijper,&nbsp;Naser Damer","doi":"10.1049/cim2.70032","DOIUrl":null,"url":null,"abstract":"<p>This work presents a novel solution for multivariate time series anomaly detection in industrial control systems (ICSs), specifically tailored for resource-constrained environments. At its core, the quantized gated recurrent unit variational autoencoder (Q-GRU-VAE) architecture, a significant evolution from conventional methods, offers an extremely lightweight yet highly effective solution. By integrating gated recurrent units (GRUs) in place of long short-term memory (LSTM) cells within a variational autoencoder (VAE) framework, and employing channel-wise dynamic post-training quantization (DPTQ), this model dramatically reduces hardware resource demands. The proposed solution exhibits performance on par with existing methods on the widely used secure water treatment (SWaT) and water distribution (WADI) benchmarks, while being tailored towards applications where computational resources are limited. This dual achievement of minimal resource consumption and preserved model efficacy paves the way for deploying advanced anomaly detection in resource-constrained environments, marking a significant leap forward in enhancing the resilience and efficiency of ICSs.</p>","PeriodicalId":33286,"journal":{"name":"IET Collaborative Intelligent Manufacturing","volume":"7 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cim2.70032","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Collaborative Intelligent Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cim2.70032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

Abstract

This work presents a novel solution for multivariate time series anomaly detection in industrial control systems (ICSs), specifically tailored for resource-constrained environments. At its core, the quantized gated recurrent unit variational autoencoder (Q-GRU-VAE) architecture, a significant evolution from conventional methods, offers an extremely lightweight yet highly effective solution. By integrating gated recurrent units (GRUs) in place of long short-term memory (LSTM) cells within a variational autoencoder (VAE) framework, and employing channel-wise dynamic post-training quantization (DPTQ), this model dramatically reduces hardware resource demands. The proposed solution exhibits performance on par with existing methods on the widely used secure water treatment (SWaT) and water distribution (WADI) benchmarks, while being tailored towards applications where computational resources are limited. This dual achievement of minimal resource consumption and preserved model efficacy paves the way for deploying advanced anomaly detection in resource-constrained environments, marking a significant leap forward in enhancing the resilience and efficiency of ICSs.

Abstract Image

基于量化循环变分自编码器的工业控制系统资源高效异常检测
这项工作为工业控制系统(ics)中的多变量时间序列异常检测提供了一种新颖的解决方案,专门为资源受限的环境量身定制。其核心是量化门控循环单元变分自编码器(Q-GRU-VAE)架构,这是对传统方法的重大改进,提供了极其轻量级但高效的解决方案。通过在变分自编码器(VAE)框架内集成门控循环单元(gru)代替长短期记忆单元(LSTM),并采用信道动态训练后量化(DPTQ),该模型显著降低了硬件资源需求。所提出的解决方案在广泛使用的安全水处理(SWaT)和水分配(WADI)基准上显示出与现有方法相当的性能,同时针对计算资源有限的应用进行了定制。这种最小化资源消耗和保持模型有效性的双重成就为在资源受限环境中部署高级异常检测铺平了道路,标志着在增强ics的弹性和效率方面取得了重大飞跃。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IET Collaborative Intelligent Manufacturing
IET Collaborative Intelligent Manufacturing Engineering-Industrial and Manufacturing Engineering
CiteScore
9.10
自引率
2.40%
发文量
25
审稿时长
20 weeks
期刊介绍: IET Collaborative Intelligent Manufacturing is a Gold Open Access journal that focuses on the development of efficient and adaptive production and distribution systems. It aims to meet the ever-changing market demands by publishing original research on methodologies and techniques for the application of intelligence, data science, and emerging information and communication technologies in various aspects of manufacturing, such as design, modeling, simulation, planning, and optimization of products, processes, production, and assembly. The journal is indexed in COMPENDEX (Elsevier), Directory of Open Access Journals (DOAJ), Emerging Sources Citation Index (Clarivate Analytics), INSPEC (IET), SCOPUS (Elsevier) and Web of Science (Clarivate Analytics).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信