{"title":"Mechanistic Insights Into the Inhibitory Effects of Arabinoxylan and (1,3)(1,4)-β-Glucan on Starch Digestive Enzymes","authors":"Ping Long, Shiqi Zeng, Ruifeng Ying, Meigui Huang","doi":"10.1111/1750-3841.70221","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The intake of dietary fiber can reduce the risk of several major chronic diseases, including colorectal cancer, obesity, type II diabetes, and cardiovascular diseases. Endogenous dietary fibers such as arabinoxylan (AX) and (1,3)(1,4)-β-glucan (BG), which have good palatability, are more suitable for addition to cereal foods. We studied starch digestion in the gelatinized AX/BG–starch complexes. To clarify the synergistic role of AX and BG in the starch digestion process and explore the effect of cell wall polysaccharides on the activity of digestive enzymes, the mechanism of action between cell wall polysaccharides and digestive enzymes was analyzed through fluorescence spectroscopy, UV–visible absorption spectroscopy, and infrared spectroscopy. The results of the interaction between cell wall polysaccharides and digestive enzymes showed that the higher the proportion of AX, the stronger the quenching effect on digestive enzymes and the lower the enzyme activity. During the digestion of the AX/BG–starch complexes, in addition to binding to the active sites of enzymes to reduce enzyme activity, AX and BG played a dominant role as barriers. On one hand, they prevented some water molecules from entering the interior of starch granules to inhibit gelatinization. On the other hand, they effectively reduced the bioaccessibility of digestive enzymes.</p>\n </div>","PeriodicalId":193,"journal":{"name":"Journal of Food Science","volume":"90 4","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Science","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1750-3841.70221","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The intake of dietary fiber can reduce the risk of several major chronic diseases, including colorectal cancer, obesity, type II diabetes, and cardiovascular diseases. Endogenous dietary fibers such as arabinoxylan (AX) and (1,3)(1,4)-β-glucan (BG), which have good palatability, are more suitable for addition to cereal foods. We studied starch digestion in the gelatinized AX/BG–starch complexes. To clarify the synergistic role of AX and BG in the starch digestion process and explore the effect of cell wall polysaccharides on the activity of digestive enzymes, the mechanism of action between cell wall polysaccharides and digestive enzymes was analyzed through fluorescence spectroscopy, UV–visible absorption spectroscopy, and infrared spectroscopy. The results of the interaction between cell wall polysaccharides and digestive enzymes showed that the higher the proportion of AX, the stronger the quenching effect on digestive enzymes and the lower the enzyme activity. During the digestion of the AX/BG–starch complexes, in addition to binding to the active sites of enzymes to reduce enzyme activity, AX and BG played a dominant role as barriers. On one hand, they prevented some water molecules from entering the interior of starch granules to inhibit gelatinization. On the other hand, they effectively reduced the bioaccessibility of digestive enzymes.
期刊介绍:
The goal of the Journal of Food Science is to offer scientists, researchers, and other food professionals the opportunity to share knowledge of scientific advancements in the myriad disciplines affecting their work, through a respected peer-reviewed publication. The Journal of Food Science serves as an international forum for vital research and developments in food science.
The range of topics covered in the journal include:
-Concise Reviews and Hypotheses in Food Science
-New Horizons in Food Research
-Integrated Food Science
-Food Chemistry
-Food Engineering, Materials Science, and Nanotechnology
-Food Microbiology and Safety
-Sensory and Consumer Sciences
-Health, Nutrition, and Food
-Toxicology and Chemical Food Safety
The Journal of Food Science publishes peer-reviewed articles that cover all aspects of food science, including safety and nutrition. Reviews should be 15 to 50 typewritten pages (including tables, figures, and references), should provide in-depth coverage of a narrowly defined topic, and should embody careful evaluation (weaknesses, strengths, explanation of discrepancies in results among similar studies) of all pertinent studies, so that insightful interpretations and conclusions can be presented. Hypothesis papers are especially appropriate in pioneering areas of research or important areas that are afflicted by scientific controversy.