{"title":"Evolution of spherical perturbations in the cosmological environment of the Higgs scalar field and an ideal scalar charged fluid","authors":"Yu. G. Ignat’ev","doi":"10.1134/S0040577925040087","DOIUrl":null,"url":null,"abstract":"<p> A mathematical model of the evolution of spherical perturbations in an ideal cosmological scalar-charged fluid coupled to the Higgs field is constructed. A closed mathematical model of linear spherical perturbations in a cosmological medium of a scalar-charged ideal fluid with scalar Higgs interaction is formulated. It is shown that spherical perturbations of the Friedmann metric are possible only in the presence of an isotropic fluid. At singular points of the background cosmological model, perturbations of the metric do not occur and perturbations are described by a vacuum-field model. Exact solutions are obtained at singular points of the cosmological system; the scalar field perturbations are shown to be traveling waves in the case of a stable singular point of the cosmological system and exponentially growing standing waves in the case of an unstable singular point. Using numerical modeling, the formation of a stratified halo in the form of growing standing waves is shown. </p>","PeriodicalId":797,"journal":{"name":"Theoretical and Mathematical Physics","volume":"223 1","pages":"636 - 649"},"PeriodicalIF":1.0000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S0040577925040087","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0
Abstract
A mathematical model of the evolution of spherical perturbations in an ideal cosmological scalar-charged fluid coupled to the Higgs field is constructed. A closed mathematical model of linear spherical perturbations in a cosmological medium of a scalar-charged ideal fluid with scalar Higgs interaction is formulated. It is shown that spherical perturbations of the Friedmann metric are possible only in the presence of an isotropic fluid. At singular points of the background cosmological model, perturbations of the metric do not occur and perturbations are described by a vacuum-field model. Exact solutions are obtained at singular points of the cosmological system; the scalar field perturbations are shown to be traveling waves in the case of a stable singular point of the cosmological system and exponentially growing standing waves in the case of an unstable singular point. Using numerical modeling, the formation of a stratified halo in the form of growing standing waves is shown.
期刊介绍:
Theoretical and Mathematical Physics covers quantum field theory and theory of elementary particles, fundamental problems of nuclear physics, many-body problems and statistical physics, nonrelativistic quantum mechanics, and basic problems of gravitation theory. Articles report on current developments in theoretical physics as well as related mathematical problems.
Theoretical and Mathematical Physics is published in collaboration with the Steklov Mathematical Institute of the Russian Academy of Sciences.