Conservation laws for extended generalized Cahn–Hilliard–Kuramoto–Sivashinsky equation in any dimension

IF 1.7 3区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY
Pavel Holba
{"title":"Conservation laws for extended generalized Cahn–Hilliard–Kuramoto–Sivashinsky equation in any dimension","authors":"Pavel Holba","doi":"10.1007/s10910-025-01717-w","DOIUrl":null,"url":null,"abstract":"<div><p>We present a complete characterization of nontrivial local conservation laws for the extended generalized Cahn–Hilliard–Kuramoto–Sivashinsky equation in any space dimension. This equation naturally generalizes the well-known and widely used Cahn–Hilliard and Kuramoto–Sivashinsky equations, which have manifold applications in chemistry, physics, and biology. In particular, we demonstrate that any nontrivial local conservation law of any order for the equation under study is equivalent to a conservation law whose density is linear in the dependent variable with the coefficient at the dependent variable depending at most on the independent variables.</p></div>","PeriodicalId":648,"journal":{"name":"Journal of Mathematical Chemistry","volume":"63 5","pages":"1312 - 1322"},"PeriodicalIF":1.7000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10910-025-01717-w.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10910-025-01717-w","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We present a complete characterization of nontrivial local conservation laws for the extended generalized Cahn–Hilliard–Kuramoto–Sivashinsky equation in any space dimension. This equation naturally generalizes the well-known and widely used Cahn–Hilliard and Kuramoto–Sivashinsky equations, which have manifold applications in chemistry, physics, and biology. In particular, we demonstrate that any nontrivial local conservation law of any order for the equation under study is equivalent to a conservation law whose density is linear in the dependent variable with the coefficient at the dependent variable depending at most on the independent variables.

任意维扩展广义Cahn-Hilliard-Kuramoto-Sivashinsky方程的守恒律
本文给出了任意空间维扩展广义Cahn-Hilliard-Kuramoto-Sivashinsky方程非平凡局部守恒律的完整刻画。这个方程自然地推广了著名的和广泛使用的Cahn-Hilliard方程和Kuramoto-Sivashinsky方程,这些方程在化学、物理和生物学中有多种应用。特别地,我们证明了所研究的方程的任何阶的非平凡局部守恒定律等价于密度在因变量上是线性的,而在因变量上的系数最多依赖于自变量的守恒定律。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Mathematical Chemistry
Journal of Mathematical Chemistry 化学-化学综合
CiteScore
3.70
自引率
17.60%
发文量
105
审稿时长
6 months
期刊介绍: The Journal of Mathematical Chemistry (JOMC) publishes original, chemically important mathematical results which use non-routine mathematical methodologies often unfamiliar to the usual audience of mainstream experimental and theoretical chemistry journals. Furthermore JOMC publishes papers on novel applications of more familiar mathematical techniques and analyses of chemical problems which indicate the need for new mathematical approaches. Mathematical chemistry is a truly interdisciplinary subject, a field of rapidly growing importance. As chemistry becomes more and more amenable to mathematically rigorous study, it is likely that chemistry will also become an alert and demanding consumer of new mathematical results. The level of complexity of chemical problems is often very high, and modeling molecular behaviour and chemical reactions does require new mathematical approaches. Chemistry is witnessing an important shift in emphasis: simplistic models are no longer satisfactory, and more detailed mathematical understanding of complex chemical properties and phenomena are required. From theoretical chemistry and quantum chemistry to applied fields such as molecular modeling, drug design, molecular engineering, and the development of supramolecular structures, mathematical chemistry is an important discipline providing both explanations and predictions. JOMC has an important role in advancing chemistry to an era of detailed understanding of molecules and reactions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信