Two-Dimensional Beam Selection by Multiarmed Bandit Algorithm Based on a Quantum Walk

Maki Arai;Tomoki Yamagami;Takatomo Mihana;Ryoichi Horisaki;Mikio Hasegawa
{"title":"Two-Dimensional Beam Selection by Multiarmed Bandit Algorithm Based on a Quantum Walk","authors":"Maki Arai;Tomoki Yamagami;Takatomo Mihana;Ryoichi Horisaki;Mikio Hasegawa","doi":"10.1109/TQE.2025.3555145","DOIUrl":null,"url":null,"abstract":"This article proposes a novel beam selection method using a multiarmed bandit (MAB) algorithm based on a quantum walk (QW) principle, aimed at improving system performance. A massive multiple-input multiple-output system, employing multiple high-gain beams within a high-frequency band, is indispensable for achieving large capacity in future wireless communications. However, as the number of beams increases, selecting the most appropriate beam for each user becomes challenging due to the extensive search space and necessitating the development of a more efficient beam selection method. Therefore, we formulate a systematic process for beam selection employing the MAB algorithm rooted in QW principles. We derive the optimal parameters of this method to maximize achievable channel capacity. Through numerical analysis, we validate that the proposed method yields a greater channel capacity than that achieved not only by traditional MAB algorithms but also by an exhaustive search with overhead.","PeriodicalId":100644,"journal":{"name":"IEEE Transactions on Quantum Engineering","volume":"6 ","pages":"1-16"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10938938","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Quantum Engineering","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10938938/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article proposes a novel beam selection method using a multiarmed bandit (MAB) algorithm based on a quantum walk (QW) principle, aimed at improving system performance. A massive multiple-input multiple-output system, employing multiple high-gain beams within a high-frequency band, is indispensable for achieving large capacity in future wireless communications. However, as the number of beams increases, selecting the most appropriate beam for each user becomes challenging due to the extensive search space and necessitating the development of a more efficient beam selection method. Therefore, we formulate a systematic process for beam selection employing the MAB algorithm rooted in QW principles. We derive the optimal parameters of this method to maximize achievable channel capacity. Through numerical analysis, we validate that the proposed method yields a greater channel capacity than that achieved not only by traditional MAB algorithms but also by an exhaustive search with overhead.
基于量子行走的多臂Bandit算法的二维光束选择
为了提高系统性能,提出了一种基于量子行走(QW)原理的多臂强盗(MAB)算法。在未来的无线通信中,利用高频频带内的多个高增益波束的大规模多输入多输出系统是实现大容量的必要条件。然而,随着波束数量的增加,为每个用户选择最合适的波束变得具有挑战性,因为搜索空间很大,需要开发更有效的波束选择方法。因此,我们制定了一个系统的波束选择过程,采用基于量子波原理的MAB算法。我们推导了该方法的最优参数,以使可实现的信道容量最大化。通过数值分析,我们验证了所提出的方法不仅比传统的MAB算法获得更大的信道容量,而且比开销较大的穷举搜索获得更大的信道容量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信