{"title":"Parallel Local and Global Context Modeling of Deep Learning-Based Monaural Speech Source Separation Techniques","authors":"Swati Soni;Lalita Gupta;Rishav Dubey","doi":"10.1109/ACCESS.2025.3562343","DOIUrl":null,"url":null,"abstract":"The novel deep learning-based time domain single channel speech source separation methods have shown remarkable progress. Recent studies achieve either successful global or local context modeling for monaural speaker separation. Existing CNN-based methods perform local context modeling, and RNN-based or attention-based methods work on the global context of the speech signal. In this paper, we proposed two models which parallelly combine CNN-RNN-based and CNN-attention-based separation modules and perform parallel local and global context modeling. Our models keep maximum global or local context value at a particular time step. These values help our models to separate the speaker signals more accurately. We have conducted the experiments on Libri2mix and Libri3mix datasets. The experimental data demonstrates that our proposed models have outperformed the state-of-the-art methods. Our proposed models remarkably improve SDR and SI-SDR values on Libri2mix and Libri3mix datasets. The proposed parallel CNN-RNN-based and CNN-attention-based separation models achieve average SDR improvement of 2.10 dB and 2.21 dB, respectively, and SI-SDR improvement of 2.74 dB and 2.78 dB, respectively, on the Libri2mix dataset. However, on the Libri3mix dataset, the proposed models achieve 0.57 dB and 0.87 dB average SDR improvement for parallel CNN-RNN-based separation module, and 0.88 dB and 1.4 dB average SI-SDR improvement for CNN-attention-based separation models. Our work indirectly contributes to SDG Goal 10 (Reduced Inequalities) by improving communication tools for diverse linguistic communities. Furthermore, this technology aids SDG Goal 9 (Industry, Innovation, and Infrastructure) by advancing AI-powered assistive technologies, fostering innovation, and building resilient communication systems.","PeriodicalId":13079,"journal":{"name":"IEEE Access","volume":"13 ","pages":"68607-68621"},"PeriodicalIF":3.4000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10969763","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Access","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10969763/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The novel deep learning-based time domain single channel speech source separation methods have shown remarkable progress. Recent studies achieve either successful global or local context modeling for monaural speaker separation. Existing CNN-based methods perform local context modeling, and RNN-based or attention-based methods work on the global context of the speech signal. In this paper, we proposed two models which parallelly combine CNN-RNN-based and CNN-attention-based separation modules and perform parallel local and global context modeling. Our models keep maximum global or local context value at a particular time step. These values help our models to separate the speaker signals more accurately. We have conducted the experiments on Libri2mix and Libri3mix datasets. The experimental data demonstrates that our proposed models have outperformed the state-of-the-art methods. Our proposed models remarkably improve SDR and SI-SDR values on Libri2mix and Libri3mix datasets. The proposed parallel CNN-RNN-based and CNN-attention-based separation models achieve average SDR improvement of 2.10 dB and 2.21 dB, respectively, and SI-SDR improvement of 2.74 dB and 2.78 dB, respectively, on the Libri2mix dataset. However, on the Libri3mix dataset, the proposed models achieve 0.57 dB and 0.87 dB average SDR improvement for parallel CNN-RNN-based separation module, and 0.88 dB and 1.4 dB average SI-SDR improvement for CNN-attention-based separation models. Our work indirectly contributes to SDG Goal 10 (Reduced Inequalities) by improving communication tools for diverse linguistic communities. Furthermore, this technology aids SDG Goal 9 (Industry, Innovation, and Infrastructure) by advancing AI-powered assistive technologies, fostering innovation, and building resilient communication systems.
IEEE AccessCOMPUTER SCIENCE, INFORMATION SYSTEMSENGIN-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
9.80
自引率
7.70%
发文量
6673
审稿时长
6 weeks
期刊介绍:
IEEE Access® is a multidisciplinary, open access (OA), applications-oriented, all-electronic archival journal that continuously presents the results of original research or development across all of IEEE''s fields of interest.
IEEE Access will publish articles that are of high interest to readers, original, technically correct, and clearly presented. Supported by author publication charges (APC), its hallmarks are a rapid peer review and publication process with open access to all readers. Unlike IEEE''s traditional Transactions or Journals, reviews are "binary", in that reviewers will either Accept or Reject an article in the form it is submitted in order to achieve rapid turnaround. Especially encouraged are submissions on:
Multidisciplinary topics, or applications-oriented articles and negative results that do not fit within the scope of IEEE''s traditional journals.
Practical articles discussing new experiments or measurement techniques, interesting solutions to engineering.
Development of new or improved fabrication or manufacturing techniques.
Reviews or survey articles of new or evolving fields oriented to assist others in understanding the new area.