A simple two-dimensional metal–organic framework–based phototherapy nanoplatform with a triple-synergistic mechanism for enhanced wound infection treatment
Xuankun Fang , Dandan Zhou , Yiwei An , Zong Dai , Duanping Sun , Yanli Tong
{"title":"A simple two-dimensional metal–organic framework–based phototherapy nanoplatform with a triple-synergistic mechanism for enhanced wound infection treatment","authors":"Xuankun Fang , Dandan Zhou , Yiwei An , Zong Dai , Duanping Sun , Yanli Tong","doi":"10.1016/j.jcis.2025.137656","DOIUrl":null,"url":null,"abstract":"<div><div>Selecting an appropriate treatment for bacterial infections is critical. However, the rising prevalence of antimicrobial resistance has rendered many existing therapies less effective, highlighting the urgent need for novel antimicrobial strategies that are less prone to inducing antimicrobial resistance. Herein, we propose a simple, energy-efficient, photoresponsive antibacterial strategy based on metal–organic frameworks. Specifically, we developed an Au@Cu-THQ system activated by near-infrared laser irradiation, capable of exerting a synergistic triple-mode antibacterial effect-photothermal, photodynamic, and glutathione (GSH) depletion for the effective treatment of bacterial infections. The photothermal effect notably enhances the generation of reactive oxygen species and accelerates GSH depletion within bacterial cells, leading to a substantial disruption of their antioxidant defense systems and significantly amplifying the photodynamic therapeutic effect. Moreover, this material demonstrated excellent and stable photothermal performance both in vitro and in vivo, characterized by high photothermal conversion efficiency and effective GSH depletion activity. These features contribute to its potent antibacterial and anti-inflammatory effects, offering a promising multimodal strategy for the future development of in vivo anti-infective formulations.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"694 ","pages":"Article 137656"},"PeriodicalIF":9.4000,"publicationDate":"2025-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979725010471","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Selecting an appropriate treatment for bacterial infections is critical. However, the rising prevalence of antimicrobial resistance has rendered many existing therapies less effective, highlighting the urgent need for novel antimicrobial strategies that are less prone to inducing antimicrobial resistance. Herein, we propose a simple, energy-efficient, photoresponsive antibacterial strategy based on metal–organic frameworks. Specifically, we developed an Au@Cu-THQ system activated by near-infrared laser irradiation, capable of exerting a synergistic triple-mode antibacterial effect-photothermal, photodynamic, and glutathione (GSH) depletion for the effective treatment of bacterial infections. The photothermal effect notably enhances the generation of reactive oxygen species and accelerates GSH depletion within bacterial cells, leading to a substantial disruption of their antioxidant defense systems and significantly amplifying the photodynamic therapeutic effect. Moreover, this material demonstrated excellent and stable photothermal performance both in vitro and in vivo, characterized by high photothermal conversion efficiency and effective GSH depletion activity. These features contribute to its potent antibacterial and anti-inflammatory effects, offering a promising multimodal strategy for the future development of in vivo anti-infective formulations.
期刊介绍:
The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality.
Emphasis:
The journal emphasizes fundamental scientific innovation within the following categories:
A.Colloidal Materials and Nanomaterials
B.Soft Colloidal and Self-Assembly Systems
C.Adsorption, Catalysis, and Electrochemistry
D.Interfacial Processes, Capillarity, and Wetting
E.Biomaterials and Nanomedicine
F.Energy Conversion and Storage, and Environmental Technologies