From average to extremes: Application of archetypal analysis in economic geography

Milad Abbasiharofteh
{"title":"From average to extremes: Application of archetypal analysis in economic geography","authors":"Milad Abbasiharofteh","doi":"10.1016/j.peg.2025.100042","DOIUrl":null,"url":null,"abstract":"<div><div>This article introduces Archetypal Analysis (AA) to economic geographers. AA is a novel unsupervised learning method that identifies and analyses outliers in multivariate datasets. Unlike conventional clustering methods focusing on the average, AA highlights extreme cases and represent each data point as convex combinations of extreme points. This method offers a needed analytical tool for recent economic geography research efforts studying the key drivers of success against all odds, like green transition in peripheral regions or poor outcomes like regional left-behindness. The article showcases the applicability of AA by creating a typology of European regions’ technological specializations in clean and dirty technologies. We provide open access to an R script to facilitate the adoption of AA in future economic geography research.</div></div>","PeriodicalId":101047,"journal":{"name":"Progress in Economic Geography","volume":"3 1","pages":"Article 100042"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Economic Geography","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949694225000070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article introduces Archetypal Analysis (AA) to economic geographers. AA is a novel unsupervised learning method that identifies and analyses outliers in multivariate datasets. Unlike conventional clustering methods focusing on the average, AA highlights extreme cases and represent each data point as convex combinations of extreme points. This method offers a needed analytical tool for recent economic geography research efforts studying the key drivers of success against all odds, like green transition in peripheral regions or poor outcomes like regional left-behindness. The article showcases the applicability of AA by creating a typology of European regions’ technological specializations in clean and dirty technologies. We provide open access to an R script to facilitate the adoption of AA in future economic geography research.
从平均到极端:原型分析在经济地理学中的应用
本文将原型分析(AA)介绍给经济地理学家。AA是一种新的无监督学习方法,用于识别和分析多元数据集中的异常值。与关注平均值的传统聚类方法不同,AA突出极端情况,并将每个数据点表示为极值点的凸组合。这种方法为最近的经济地理学研究工作提供了一种必要的分析工具,用于研究克服各种困难的关键驱动因素,如外围地区的绿色转型或区域落后等不良结果。本文通过创建欧洲地区在清洁技术和污染技术方面的技术专门化类型,展示了AA的适用性。我们提供了一个R脚本的开放访问,以便在未来的经济地理学研究中采用AA。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信