Dong Geon Son , Jong-Sub Lee , Seungjun Kim , Yong-Hoon Byun
{"title":"Permanent strain behavior of basalt fiber–reinforced controlled low-strength material under repeated loading","authors":"Dong Geon Son , Jong-Sub Lee , Seungjun Kim , Yong-Hoon Byun","doi":"10.1016/j.trgeo.2025.101570","DOIUrl":null,"url":null,"abstract":"<div><div>Controlled low-strength material (CLSM) is a flowable, self-leveling backfill material used as an alternative to compacted soil for backfilling trenches, retaining walls, underground cavities, and in pavement construction. This study aims to investigate the permanent deformation of CLSM reinforced with basalt fibers. Basalt fibers with lengths of 6 and 24 mm are incorporated into CLSM mixtures to assess their impact on flowability, setting times, and mechanical properties. Mechanical testing indicates that longer fibers improve tensile strength through a bridging effect. Repeated load triaxial tests are conducted to evaluate the permanent strain behavior under repeated loading. The results show that permanent strain increases with the deviator stress and number of loading cycles. A regression model accounting for the number of loading cycles and deviator stress provides accurate permanent-strain predictions, and the permanent strain behaviors are classified based on the refined shakedown theory. Therefore, the basalt-fiber-reinforced CLSM suggested in this study may be suitable for pavement base material due to its relatively low permanent strain under typical stress conditions.</div></div>","PeriodicalId":56013,"journal":{"name":"Transportation Geotechnics","volume":"52 ","pages":"Article 101570"},"PeriodicalIF":4.9000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Geotechnics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214391225000893","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Controlled low-strength material (CLSM) is a flowable, self-leveling backfill material used as an alternative to compacted soil for backfilling trenches, retaining walls, underground cavities, and in pavement construction. This study aims to investigate the permanent deformation of CLSM reinforced with basalt fibers. Basalt fibers with lengths of 6 and 24 mm are incorporated into CLSM mixtures to assess their impact on flowability, setting times, and mechanical properties. Mechanical testing indicates that longer fibers improve tensile strength through a bridging effect. Repeated load triaxial tests are conducted to evaluate the permanent strain behavior under repeated loading. The results show that permanent strain increases with the deviator stress and number of loading cycles. A regression model accounting for the number of loading cycles and deviator stress provides accurate permanent-strain predictions, and the permanent strain behaviors are classified based on the refined shakedown theory. Therefore, the basalt-fiber-reinforced CLSM suggested in this study may be suitable for pavement base material due to its relatively low permanent strain under typical stress conditions.
期刊介绍:
Transportation Geotechnics is a journal dedicated to publishing high-quality, theoretical, and applied papers that cover all facets of geotechnics for transportation infrastructure such as roads, highways, railways, underground railways, airfields, and waterways. The journal places a special emphasis on case studies that present original work relevant to the sustainable construction of transportation infrastructure. The scope of topics it addresses includes the geotechnical properties of geomaterials for sustainable and rational design and construction, the behavior of compacted and stabilized geomaterials, the use of geosynthetics and reinforcement in constructed layers and interlayers, ground improvement and slope stability for transportation infrastructures, compaction technology and management, maintenance technology, the impact of climate, embankments for highways and high-speed trains, transition zones, dredging, underwater geotechnics for infrastructure purposes, and the modeling of multi-layered structures and supporting ground under dynamic and repeated loads.