Learning disruptor-suppressed response variation-aware multi-regularized correlation filter for visual tracking

IF 2.6 4区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Sathishkumar Moorthy , Sachin Sakthi K.S. , Sathiyamoorthi Arthanari , Jae Hoon Jeong , Young Hoon Joo
{"title":"Learning disruptor-suppressed response variation-aware multi-regularized correlation filter for visual tracking","authors":"Sathishkumar Moorthy ,&nbsp;Sachin Sakthi K.S. ,&nbsp;Sathiyamoorthi Arthanari ,&nbsp;Jae Hoon Jeong ,&nbsp;Young Hoon Joo","doi":"10.1016/j.jvcir.2025.104458","DOIUrl":null,"url":null,"abstract":"<div><div>Discriminative correlation filters (DCF) are widely used in object tracking for their high accuracy and computational efficiency. However, conventional DCF methods, which rely only on consecutive frames, often lack robustness due to limited temporal information and can suffer from noise introduced by historical frames. To address these limitations, we propose a novel disruptor-suppressed response variation-aware multi-regularized tracking (DSRVMRT) method. This approach improves tracking stability by incorporating historical interval information in filter training, thus leveraging a broader temporal context. Our method includes response deviation regularization to maintain consistent response quality and introduces a receptive channel weight distribution to enhance channel reliability. Additionally, we implement a disruptor-aware scheme using response bucketing, which detects and penalizes areas affected by similar objects or partial occlusions, reducing tracking disruptions. Extensive evaluations on public tracking benchmarks demonstrate that DSRVMRT achieves superior accuracy, robustness, and effectiveness compared to existing methods.</div></div>","PeriodicalId":54755,"journal":{"name":"Journal of Visual Communication and Image Representation","volume":"110 ","pages":"Article 104458"},"PeriodicalIF":2.6000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Visual Communication and Image Representation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1047320325000720","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Discriminative correlation filters (DCF) are widely used in object tracking for their high accuracy and computational efficiency. However, conventional DCF methods, which rely only on consecutive frames, often lack robustness due to limited temporal information and can suffer from noise introduced by historical frames. To address these limitations, we propose a novel disruptor-suppressed response variation-aware multi-regularized tracking (DSRVMRT) method. This approach improves tracking stability by incorporating historical interval information in filter training, thus leveraging a broader temporal context. Our method includes response deviation regularization to maintain consistent response quality and introduces a receptive channel weight distribution to enhance channel reliability. Additionally, we implement a disruptor-aware scheme using response bucketing, which detects and penalizes areas affected by similar objects or partial occlusions, reducing tracking disruptions. Extensive evaluations on public tracking benchmarks demonstrate that DSRVMRT achieves superior accuracy, robustness, and effectiveness compared to existing methods.
用于视觉跟踪的学习干扰抑制响应变差感知多正则化相关滤波器
判别相关滤波器以其较高的精度和计算效率在目标跟踪中得到了广泛的应用。然而,传统的DCF方法仅依赖于连续帧,由于时间信息有限,往往缺乏鲁棒性,并且可能受到历史帧引入的噪声的影响。为了解决这些限制,我们提出了一种新的干扰抑制响应变化感知多正则化跟踪(DSRVMRT)方法。这种方法通过在过滤器训练中加入历史间隔信息来提高跟踪稳定性,从而利用更广泛的时间上下文。我们的方法包括响应偏差正则化以保持一致的响应质量,并引入接收信道权重分布以提高信道可靠性。此外,我们使用响应桶实现干扰感知方案,该方案检测和惩罚受类似物体或部分遮挡影响的区域,减少跟踪中断。对公共跟踪基准的广泛评估表明,与现有方法相比,DSRVMRT具有更高的准确性、鲁棒性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Visual Communication and Image Representation
Journal of Visual Communication and Image Representation 工程技术-计算机:软件工程
CiteScore
5.40
自引率
11.50%
发文量
188
审稿时长
9.9 months
期刊介绍: The Journal of Visual Communication and Image Representation publishes papers on state-of-the-art visual communication and image representation, with emphasis on novel technologies and theoretical work in this multidisciplinary area of pure and applied research. The field of visual communication and image representation is considered in its broadest sense and covers both digital and analog aspects as well as processing and communication in biological visual systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信