{"title":"Convergence of individual opinions during a bi-virus epidemic and its impact","authors":"Shidong Zhai , Zhenmei Zhang , Jun Ma","doi":"10.1016/j.matcom.2025.04.006","DOIUrl":null,"url":null,"abstract":"<div><div>This paper investigates the intricate interplay between individual opinions and bi-virus transmission in a city or country. The proposed model considers two competing viruses, where virus transmission is shaped by individuals’ perceptions of the epidemic, which are, in turn, influenced by the transmission dynamics. Building on the concept of an opinion-dependent reproduction number, we conduct a rigorous theoretical analysis of the proposed model, focusing on equilibrium stability and parameter sensitivity. From the analysis of simulated data, we derive the following insights: (1) Negative opinions during an epidemic, such as believing the epidemic is not severe or distrusting public health measures, may result in inaccurate community responses and potentially reignite outbreaks. (2) In the bi-virus-opinion model, while perceived epidemic severity can reduce infection rates, it does not alter the dominance of the prevailing virus under conditions of high epidemic severity. Furthermore, we examine the role of stubborn opinions to reshape public perception, which can facilitate epidemic eradication under mild epidemic conditions. In the case of dual-virus competition, stubborn opinions can alter the final competitive outcomes. Finally, numerical simulations are performed to validate the findings and corroborate them with real-world data from the SARS-CoV-2 pandemic.</div></div>","PeriodicalId":49856,"journal":{"name":"Mathematics and Computers in Simulation","volume":"236 ","pages":"Pages 334-353"},"PeriodicalIF":4.4000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics and Computers in Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S037847542500134X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper investigates the intricate interplay between individual opinions and bi-virus transmission in a city or country. The proposed model considers two competing viruses, where virus transmission is shaped by individuals’ perceptions of the epidemic, which are, in turn, influenced by the transmission dynamics. Building on the concept of an opinion-dependent reproduction number, we conduct a rigorous theoretical analysis of the proposed model, focusing on equilibrium stability and parameter sensitivity. From the analysis of simulated data, we derive the following insights: (1) Negative opinions during an epidemic, such as believing the epidemic is not severe or distrusting public health measures, may result in inaccurate community responses and potentially reignite outbreaks. (2) In the bi-virus-opinion model, while perceived epidemic severity can reduce infection rates, it does not alter the dominance of the prevailing virus under conditions of high epidemic severity. Furthermore, we examine the role of stubborn opinions to reshape public perception, which can facilitate epidemic eradication under mild epidemic conditions. In the case of dual-virus competition, stubborn opinions can alter the final competitive outcomes. Finally, numerical simulations are performed to validate the findings and corroborate them with real-world data from the SARS-CoV-2 pandemic.
期刊介绍:
The aim of the journal is to provide an international forum for the dissemination of up-to-date information in the fields of the mathematics and computers, in particular (but not exclusively) as they apply to the dynamics of systems, their simulation and scientific computation in general. Published material ranges from short, concise research papers to more general tutorial articles.
Mathematics and Computers in Simulation, published monthly, is the official organ of IMACS, the International Association for Mathematics and Computers in Simulation (Formerly AICA). This Association, founded in 1955 and legally incorporated in 1956 is a member of FIACC (the Five International Associations Coordinating Committee), together with IFIP, IFAV, IFORS and IMEKO.
Topics covered by the journal include mathematical tools in:
•The foundations of systems modelling
•Numerical analysis and the development of algorithms for simulation
They also include considerations about computer hardware for simulation and about special software and compilers.
The journal also publishes articles concerned with specific applications of modelling and simulation in science and engineering, with relevant applied mathematics, the general philosophy of systems simulation, and their impact on disciplinary and interdisciplinary research.
The journal includes a Book Review section -- and a "News on IMACS" section that contains a Calendar of future Conferences/Events and other information about the Association.