Luojia Dai , Zhenqiu Liu , Chengnan Guo , Hong Fan , Chengjun Zhang , Jiayi Huang , Xin Zhang , Shuzhen Zhao , Haili Wang , Tiejun Zhang
{"title":"Proteomic insights into metabolic dysfunction-associated steatotic disease: Identifying therapeutic targets and assessing on-target side effects","authors":"Luojia Dai , Zhenqiu Liu , Chengnan Guo , Hong Fan , Chengjun Zhang , Jiayi Huang , Xin Zhang , Shuzhen Zhao , Haili Wang , Tiejun Zhang","doi":"10.1016/j.lfs.2025.123665","DOIUrl":null,"url":null,"abstract":"<div><h3>Aims</h3><div>The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) is rising sharply, yet treatment options remain inadequate. To uncover new therapeutic targets for MASLD, we conducted a comprehensive proteome-wide Mendelian randomization (MR) and phenome-wide association study (PheWAS).</div></div><div><h3>Materials and methods</h3><div>Discovery MR utilized protein quantitative trait loci (pQTL) data on 4907 plasma protein levels from 35,559 individuals, alongside genome-wide association study (GWAS) on MASLD from the Million Veteran Program (68,725 cases / 95,482 controls). Validation comprised five pairwise combinations of these discovery datasets with three additional datasets: pQTL data for 2923 proteins from the UK Biobank, and liver biopsy-confirmed MASLD GWAS (1483 cases/17,781 controls) and MRI-liver fat GWAS (31,377 subjects) (excluding discovery pair). Candidate proteins underwent druggability assessment and on-target side effect evaluation via PheWAS.</div></div><div><h3>Key findings</h3><div>We identified 26 proteins associated with MASLD after Bonferroni correction (<em>P</em> < 1.16 × 10<sup>-5</sup>), with 19 of them showing no significant reverse association. Interleukin-6 (IL-6), alpha-1-antitrypsin (α1-antitrypsin), 5-hydroxytryptamine receptor 7 (5-HT7R), ephrin-B1 (EFNB1), and protein MENT (CA056) were replicated. Notably, IL-6 (OR = 2.02; 95 % CI 1.54-2.64), 5-HT7R (OR = 2.73; 95 % CI 1.96-3.80), and EFNB1 (OR = 1.82; 95 % CI 1.59-2.08) were positively associated with MASLD risk, whereas α1-antitrypsin (OR = 0.84; 95 % CI 0.78-0.90) and CA056 (OR = 0.90; 95 % CI 0.86-0.94) appeared protective. Among these, IL-6, 5-HT7R, and α1-antitrypsin were druggable. PheWAS identified potential cardiovascular side effects for 5-HT7R and α1-antitrypsin.</div></div><div><h3>Significance</h3><div>The integrative study identified several plasma proteins associated with MASLD<em>.</em> IL-6, α1-antitrypsin, 5-HT7R, EFNB1 and CA056 deserve further investigation as potential drug targets for MASLD.</div></div>","PeriodicalId":18122,"journal":{"name":"Life sciences","volume":"373 ","pages":"Article 123665"},"PeriodicalIF":5.2000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Life sciences","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024320525003005","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Aims
The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) is rising sharply, yet treatment options remain inadequate. To uncover new therapeutic targets for MASLD, we conducted a comprehensive proteome-wide Mendelian randomization (MR) and phenome-wide association study (PheWAS).
Materials and methods
Discovery MR utilized protein quantitative trait loci (pQTL) data on 4907 plasma protein levels from 35,559 individuals, alongside genome-wide association study (GWAS) on MASLD from the Million Veteran Program (68,725 cases / 95,482 controls). Validation comprised five pairwise combinations of these discovery datasets with three additional datasets: pQTL data for 2923 proteins from the UK Biobank, and liver biopsy-confirmed MASLD GWAS (1483 cases/17,781 controls) and MRI-liver fat GWAS (31,377 subjects) (excluding discovery pair). Candidate proteins underwent druggability assessment and on-target side effect evaluation via PheWAS.
Key findings
We identified 26 proteins associated with MASLD after Bonferroni correction (P < 1.16 × 10-5), with 19 of them showing no significant reverse association. Interleukin-6 (IL-6), alpha-1-antitrypsin (α1-antitrypsin), 5-hydroxytryptamine receptor 7 (5-HT7R), ephrin-B1 (EFNB1), and protein MENT (CA056) were replicated. Notably, IL-6 (OR = 2.02; 95 % CI 1.54-2.64), 5-HT7R (OR = 2.73; 95 % CI 1.96-3.80), and EFNB1 (OR = 1.82; 95 % CI 1.59-2.08) were positively associated with MASLD risk, whereas α1-antitrypsin (OR = 0.84; 95 % CI 0.78-0.90) and CA056 (OR = 0.90; 95 % CI 0.86-0.94) appeared protective. Among these, IL-6, 5-HT7R, and α1-antitrypsin were druggable. PheWAS identified potential cardiovascular side effects for 5-HT7R and α1-antitrypsin.
Significance
The integrative study identified several plasma proteins associated with MASLD. IL-6, α1-antitrypsin, 5-HT7R, EFNB1 and CA056 deserve further investigation as potential drug targets for MASLD.
期刊介绍:
Life Sciences is an international journal publishing articles that emphasize the molecular, cellular, and functional basis of therapy. The journal emphasizes the understanding of mechanism that is relevant to all aspects of human disease and translation to patients. All articles are rigorously reviewed.
The Journal favors publication of full-length papers where modern scientific technologies are used to explain molecular, cellular and physiological mechanisms. Articles that merely report observations are rarely accepted. Recommendations from the Declaration of Helsinki or NIH guidelines for care and use of laboratory animals must be adhered to. Articles should be written at a level accessible to readers who are non-specialists in the topic of the article themselves, but who are interested in the research. The Journal welcomes reviews on topics of wide interest to investigators in the life sciences. We particularly encourage submission of brief, focused reviews containing high-quality artwork and require the use of mechanistic summary diagrams.