{"title":"DICCA-DTA: Diffusion and Contextualized Capsule Attention guided Factorized Cross-Pooling for Drug-Target Affinity prediction","authors":"Uma E., Mala T.","doi":"10.1016/j.compbiolchem.2025.108472","DOIUrl":null,"url":null,"abstract":"<div><div>Drug-Target Affinity (DTA) prediction plays a crucial role in the drug discovery process by evaluating the strength of the interaction between a drug and its biological target, which is often a protein. Despite advancements in DTA prediction through deep learning, several fundamental challenges persist: (i) suboptimal information propagation in molecular graphs, limiting the effective representation of complex drug structures, (ii) accurately modeling the complex interactions between drug-binding sites and protein substructures, and (iii) prioritizing critical substructure interactions to enhance both accuracy and interpretability. To address these challenges, the DICCA-DTA framework is introduced, aiming to improve the contextual integration of molecular information and facilitate a more comprehensive representation of drug-target interactions in allopathic research. It employs a Diffused Isomorphic Network (DIN) to extract comprehensive drug features from molecular graphs, capturing both local substructures and global information. Furthermore, a Contextualized Capsule Attention Network (CCAN) module incorporates multi-head attention with capsule networks to capture both local and global protein sequence characteristics. The attention-guided Factorized Cross-Pooling (FCP) mechanism dynamically refines drug-protein interaction modeling by selectively emphasizing critical binding site interactions, thereby enhancing predictive accuracy. Explainable attention maps further reveal the most crucial drug-protein binding site interactions, providing transparent insights into the model’s decision-making process. Comprehensive evaluations across the Davis, KIBA, Metz and BindingDB datasets demonstrate the superior performance of the DICCA-DTA framework over existing state-of-the-art models. A case study on cancer-related protein interactions from the DrugBank database further demonstrates the framework’s precision in identifying key drug-protein affinities, reinforcing its potential to accelerate drug discovery and repurposing.</div></div>","PeriodicalId":10616,"journal":{"name":"Computational Biology and Chemistry","volume":"118 ","pages":"Article 108472"},"PeriodicalIF":2.6000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Biology and Chemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S147692712500132X","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Drug-Target Affinity (DTA) prediction plays a crucial role in the drug discovery process by evaluating the strength of the interaction between a drug and its biological target, which is often a protein. Despite advancements in DTA prediction through deep learning, several fundamental challenges persist: (i) suboptimal information propagation in molecular graphs, limiting the effective representation of complex drug structures, (ii) accurately modeling the complex interactions between drug-binding sites and protein substructures, and (iii) prioritizing critical substructure interactions to enhance both accuracy and interpretability. To address these challenges, the DICCA-DTA framework is introduced, aiming to improve the contextual integration of molecular information and facilitate a more comprehensive representation of drug-target interactions in allopathic research. It employs a Diffused Isomorphic Network (DIN) to extract comprehensive drug features from molecular graphs, capturing both local substructures and global information. Furthermore, a Contextualized Capsule Attention Network (CCAN) module incorporates multi-head attention with capsule networks to capture both local and global protein sequence characteristics. The attention-guided Factorized Cross-Pooling (FCP) mechanism dynamically refines drug-protein interaction modeling by selectively emphasizing critical binding site interactions, thereby enhancing predictive accuracy. Explainable attention maps further reveal the most crucial drug-protein binding site interactions, providing transparent insights into the model’s decision-making process. Comprehensive evaluations across the Davis, KIBA, Metz and BindingDB datasets demonstrate the superior performance of the DICCA-DTA framework over existing state-of-the-art models. A case study on cancer-related protein interactions from the DrugBank database further demonstrates the framework’s precision in identifying key drug-protein affinities, reinforcing its potential to accelerate drug discovery and repurposing.
期刊介绍:
Computational Biology and Chemistry publishes original research papers and review articles in all areas of computational life sciences. High quality research contributions with a major computational component in the areas of nucleic acid and protein sequence research, molecular evolution, molecular genetics (functional genomics and proteomics), theory and practice of either biology-specific or chemical-biology-specific modeling, and structural biology of nucleic acids and proteins are particularly welcome. Exceptionally high quality research work in bioinformatics, systems biology, ecology, computational pharmacology, metabolism, biomedical engineering, epidemiology, and statistical genetics will also be considered.
Given their inherent uncertainty, protein modeling and molecular docking studies should be thoroughly validated. In the absence of experimental results for validation, the use of molecular dynamics simulations along with detailed free energy calculations, for example, should be used as complementary techniques to support the major conclusions. Submissions of premature modeling exercises without additional biological insights will not be considered.
Review articles will generally be commissioned by the editors and should not be submitted to the journal without explicit invitation. However prospective authors are welcome to send a brief (one to three pages) synopsis, which will be evaluated by the editors.