{"title":"Eigenhearts: Cardiac diseases classification using eigenfaces approach","authors":"Nourelhouda Groun , María Villalba-Orero , Lucía Casado-Martín , Enrique Lara-Pezzi , Eusebio Valero , Soledad Le Clainche , Jesús Garicano-Mena","doi":"10.1016/j.compbiomed.2025.110167","DOIUrl":null,"url":null,"abstract":"<div><div>In the realm of cardiovascular medicine, medical imaging plays a crucial role in accurately classifying cardiac diseases and making precise diagnoses. However, the integration of data science techniques in this field presents significant challenges, as it requires a large volume of images, while ethical constraints, high costs, and variability in imaging protocols limit data acquisition. As a consequence, it is necessary to investigate different avenues to overcome this challenge. In this contribution, we offer an innovative tool to conquer this limitation. In particular, we delve into the application of a well recognized method known as the <em>eigenfaces</em> approach to classify cardiac diseases. This approach was originally motivated for efficiently representing pictures of faces using principal component analysis, which provides a set of eigenvectors (aka <em>eigenfaces</em>), explaining the variation between face images. Given its effectiveness in face recognition, we sought to evaluate its applicability to more complex medical imaging datasets. In particular, we integrate this approach with convolutional neural networks to classify echocardiography images taken from mice in five distinct cardiac conditions (healthy, diabetic cardiomyopathy, myocardial infarction, obesity and TAC hypertension). The results show a substantial and noteworthy enhancement when employing the singular value decomposition for pre-processing, with classification accuracy increasing by approximately 50%.</div></div>","PeriodicalId":10578,"journal":{"name":"Computers in biology and medicine","volume":"192 ","pages":"Article 110167"},"PeriodicalIF":7.0000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in biology and medicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010482525005189","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In the realm of cardiovascular medicine, medical imaging plays a crucial role in accurately classifying cardiac diseases and making precise diagnoses. However, the integration of data science techniques in this field presents significant challenges, as it requires a large volume of images, while ethical constraints, high costs, and variability in imaging protocols limit data acquisition. As a consequence, it is necessary to investigate different avenues to overcome this challenge. In this contribution, we offer an innovative tool to conquer this limitation. In particular, we delve into the application of a well recognized method known as the eigenfaces approach to classify cardiac diseases. This approach was originally motivated for efficiently representing pictures of faces using principal component analysis, which provides a set of eigenvectors (aka eigenfaces), explaining the variation between face images. Given its effectiveness in face recognition, we sought to evaluate its applicability to more complex medical imaging datasets. In particular, we integrate this approach with convolutional neural networks to classify echocardiography images taken from mice in five distinct cardiac conditions (healthy, diabetic cardiomyopathy, myocardial infarction, obesity and TAC hypertension). The results show a substantial and noteworthy enhancement when employing the singular value decomposition for pre-processing, with classification accuracy increasing by approximately 50%.
期刊介绍:
Computers in Biology and Medicine is an international forum for sharing groundbreaking advancements in the use of computers in bioscience and medicine. This journal serves as a medium for communicating essential research, instruction, ideas, and information regarding the rapidly evolving field of computer applications in these domains. By encouraging the exchange of knowledge, we aim to facilitate progress and innovation in the utilization of computers in biology and medicine.