Conformal prediction enables disease course prediction and allows individualized diagnostic uncertainty in multiple sclerosis

IF 12.4 1区 医学 Q1 HEALTH CARE SCIENCES & SERVICES
Akshai Parakkal Sreenivasan, Aina Vaivade, Yassine Noui, Payam Emami Khoonsari, Joachim Burman, Ola Spjuth, Kim Kultima
{"title":"Conformal prediction enables disease course prediction and allows individualized diagnostic uncertainty in multiple sclerosis","authors":"Akshai Parakkal Sreenivasan, Aina Vaivade, Yassine Noui, Payam Emami Khoonsari, Joachim Burman, Ola Spjuth, Kim Kultima","doi":"10.1038/s41746-025-01616-z","DOIUrl":null,"url":null,"abstract":"<p>Accurate assessment of progression and disease course in multiple sclerosis (MS) is vital for timely and appropriate clinical intervention. The gradual transition from relapsing-remitting MS (RRMS) to secondary progressive MS (SPMS) is often diagnosed retrospectively with a typical delay of three years. To address this diagnostic delay, we developed a predictive model that uses electronic health records to distinguish between RRMS and SPMS at each individual visit. To enable reliable predictions, conformal prediction was implemented at the individual patient level with a confidence of 93%. Our model accurately predicted the change in diagnosis from RRMS to SPMS for patients who transitioned during the study period. Additionally, we identified new patients who, with high probability, are in the transition phase but have not yet received a clinical diagnosis. Our methodology aids in monitoring MS progression and proactively identifying transitioning patients. An anonymized model is available at https://msp-tracker.serve.scilifelab.se/.</p>","PeriodicalId":19349,"journal":{"name":"NPJ Digital Medicine","volume":"41 1","pages":""},"PeriodicalIF":12.4000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Digital Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41746-025-01616-z","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate assessment of progression and disease course in multiple sclerosis (MS) is vital for timely and appropriate clinical intervention. The gradual transition from relapsing-remitting MS (RRMS) to secondary progressive MS (SPMS) is often diagnosed retrospectively with a typical delay of three years. To address this diagnostic delay, we developed a predictive model that uses electronic health records to distinguish between RRMS and SPMS at each individual visit. To enable reliable predictions, conformal prediction was implemented at the individual patient level with a confidence of 93%. Our model accurately predicted the change in diagnosis from RRMS to SPMS for patients who transitioned during the study period. Additionally, we identified new patients who, with high probability, are in the transition phase but have not yet received a clinical diagnosis. Our methodology aids in monitoring MS progression and proactively identifying transitioning patients. An anonymized model is available at https://msp-tracker.serve.scilifelab.se/.

Abstract Image

适形预测能够预测病程,并允许多发性硬化症的个体化诊断不确定性
准确评估多发性硬化症(MS)的进展和病程对于及时和适当的临床干预至关重要。从复发缓解型多发性硬化症(RRMS)逐渐过渡到继发性进展型多发性硬化症(SPMS)通常被回顾性诊断为典型的延迟3年。为了解决这一诊断延迟问题,我们开发了一个预测模型,该模型使用电子健康记录在每次就诊时区分RRMS和SPMS。为了实现可靠的预测,在个体患者水平上进行了适形预测,置信度为93%。我们的模型准确地预测了在研究期间过渡的患者从RRMS到SPMS的诊断变化。此外,我们确定了新患者,他们很可能处于过渡阶段,但尚未接受临床诊断。我们的方法有助于监测MS进展和主动识别过渡患者。一个匿名模型可以在https://msp-tracker.serve.scilifelab.se/上找到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
25.10
自引率
3.30%
发文量
170
审稿时长
15 weeks
期刊介绍: npj Digital Medicine is an online open-access journal that focuses on publishing peer-reviewed research in the field of digital medicine. The journal covers various aspects of digital medicine, including the application and implementation of digital and mobile technologies in clinical settings, virtual healthcare, and the use of artificial intelligence and informatics. The primary goal of the journal is to support innovation and the advancement of healthcare through the integration of new digital and mobile technologies. When determining if a manuscript is suitable for publication, the journal considers four important criteria: novelty, clinical relevance, scientific rigor, and digital innovation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信