Ryu Yamasaki, Ami Tashiro, Chisaki Sato, Ai Ito, Iwao Okamoto
{"title":"Conformational Preference of N-Difluoromethylated Amides: Contributions of Hydrogen-Bonding, Steric, and Stereoelectronic Effects","authors":"Ryu Yamasaki, Ami Tashiro, Chisaki Sato, Ai Ito, Iwao Okamoto","doi":"10.1039/d5qo00497g","DOIUrl":null,"url":null,"abstract":"Fluorine, possessing the highest electronegativity among all elements, is frequently introduced to modify the structure and properties of compounds. Among fluorine-containing substituents, the difluoromethyl group is regarded as a bioisostere of a hydroxyl or isopropyl group, but its effect on the conformation of amides has not been thoroughly investigated. This study presents a detailed analysis of the conformational preferences of <em>N</em>-difluoromethylated amides and the effects of the difluoromethyl group, focusing on hydrogen-bonding, steric and stereoelectronic effects. <em>N</em>-Difluoromethylated amides were synthesized directly from amides using TMSCF<small><sub>2</sub></small>Br and tBuONa as a base. NMR analysis revealed that <em>N</em>-difluoromethylated anilides preferentially adopt cis conformation, whereas a phenylalanine derivative favors trans conformation. DFT calculations suggest that the difluoromethyl group interacts with both the carbonyl group and a phenyl group, but repulsion between the carbonyl oxygen and phenyl group and <em>n</em>(O) → π*<small><sub>C=O</sub></small> interaction play major roles in determining the conformational preferences. In addition, the trans conformer of the <em>N</em>-difluoromethylated phenylalanine derivative is stabilized by electron donation from fluorine, enhancing amide resonance.","PeriodicalId":97,"journal":{"name":"Organic Chemistry Frontiers","volume":"17 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Chemistry Frontiers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5qo00497g","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0
Abstract
Fluorine, possessing the highest electronegativity among all elements, is frequently introduced to modify the structure and properties of compounds. Among fluorine-containing substituents, the difluoromethyl group is regarded as a bioisostere of a hydroxyl or isopropyl group, but its effect on the conformation of amides has not been thoroughly investigated. This study presents a detailed analysis of the conformational preferences of N-difluoromethylated amides and the effects of the difluoromethyl group, focusing on hydrogen-bonding, steric and stereoelectronic effects. N-Difluoromethylated amides were synthesized directly from amides using TMSCF2Br and tBuONa as a base. NMR analysis revealed that N-difluoromethylated anilides preferentially adopt cis conformation, whereas a phenylalanine derivative favors trans conformation. DFT calculations suggest that the difluoromethyl group interacts with both the carbonyl group and a phenyl group, but repulsion between the carbonyl oxygen and phenyl group and n(O) → π*C=O interaction play major roles in determining the conformational preferences. In addition, the trans conformer of the N-difluoromethylated phenylalanine derivative is stabilized by electron donation from fluorine, enhancing amide resonance.
期刊介绍:
Organic Chemistry Frontiers is an esteemed journal that publishes high-quality research across the field of organic chemistry. It places a significant emphasis on studies that contribute substantially to the field by introducing new or significantly improved protocols and methodologies. The journal covers a wide array of topics which include, but are not limited to, organic synthesis, the development of synthetic methodologies, catalysis, natural products, functional organic materials, supramolecular and macromolecular chemistry, as well as physical and computational organic chemistry.