Prediction of resistance to hydroxyurea therapy in patients with polycythemia vera: a machine learning study (PV-AIM) validated in a prospective interventional phase IV trial (HU-F-AIM)

IF 12.8 1区 医学 Q1 HEMATOLOGY
Florian H. Heidel, Valerio De Stefano, Matthias Zaiss, Jens Kisro, Eva Gückel, Susanne Großer, Mike W. Zuurman, Kirsi Manz, Kenneth Bryan, Armita Afsharinejad, Martin Griesshammer, Jean-Jacques Kiladjian
{"title":"Prediction of resistance to hydroxyurea therapy in patients with polycythemia vera: a machine learning study (PV-AIM) validated in a prospective interventional phase IV trial (HU-F-AIM)","authors":"Florian H. Heidel, Valerio De Stefano, Matthias Zaiss, Jens Kisro, Eva Gückel, Susanne Großer, Mike W. Zuurman, Kirsi Manz, Kenneth Bryan, Armita Afsharinejad, Martin Griesshammer, Jean-Jacques Kiladjian","doi":"10.1038/s41375-025-02623-5","DOIUrl":null,"url":null,"abstract":"<p>Polycythemia vera (PV) is a myeloproliferative neoplasm associated with increased thromboembolic (TE) risk and hematologic complications. Hydroxyurea (HU) serves as the most frequently used first-line cytoreductive therapy worldwide; however, resistance to HU (HU-RES) develops in a significant subset of patients, leading to increased morbidity and necessitating alternative treatments. This study, part of the PV-AIM project, employed machine learning techniques on real-world evidence (RWE) from the Optum® EHR database containing 82.960 PV patients to identify baseline predictors of HU-RES within the first 6–9 months of therapy. Using a Random Forest model, the study analyzed data from 1850 patients, focusing on laboratory parameters and clinical characteristics. Key predictive markers included red cell distribution width (RDW) and hemoglobin (HGB), showing the strongest association with HU-RES. A synergistic interaction between RDW and HGB was identified, enabling TE risk stratification. This study provides a robust framework for early detection of HU-RES using readily available clinical data, facilitating timely intervention. These findings underscore the importance of personalized treatment approaches in managing PV and highlight the utility of machine learning in enhancing predictive accuracy and clinical outcomes. Based on the results of PV-AIM we initiated an open-label, prospective, single-arm, interventional, phase IV study (HU-F-AIM) evaluating HU-resistance/intolerance. Validation of predictive biomarkers may facilitate identification of patients at risk of HU resistance who may benefit from alternative treatment options, possibly preventing ongoing phlebotomy during HU treatment, a frequent therapeutic choice in high-risk PV associated with early disease progression and increased thromboembolic complications. We propose an updated terminology that differentiates between true molecular resistance and clinical resistance, that may indicate the requirement for alternative therapeutic strategies.</p>","PeriodicalId":18109,"journal":{"name":"Leukemia","volume":"1 1","pages":""},"PeriodicalIF":12.8000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Leukemia","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41375-025-02623-5","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Polycythemia vera (PV) is a myeloproliferative neoplasm associated with increased thromboembolic (TE) risk and hematologic complications. Hydroxyurea (HU) serves as the most frequently used first-line cytoreductive therapy worldwide; however, resistance to HU (HU-RES) develops in a significant subset of patients, leading to increased morbidity and necessitating alternative treatments. This study, part of the PV-AIM project, employed machine learning techniques on real-world evidence (RWE) from the Optum® EHR database containing 82.960 PV patients to identify baseline predictors of HU-RES within the first 6–9 months of therapy. Using a Random Forest model, the study analyzed data from 1850 patients, focusing on laboratory parameters and clinical characteristics. Key predictive markers included red cell distribution width (RDW) and hemoglobin (HGB), showing the strongest association with HU-RES. A synergistic interaction between RDW and HGB was identified, enabling TE risk stratification. This study provides a robust framework for early detection of HU-RES using readily available clinical data, facilitating timely intervention. These findings underscore the importance of personalized treatment approaches in managing PV and highlight the utility of machine learning in enhancing predictive accuracy and clinical outcomes. Based on the results of PV-AIM we initiated an open-label, prospective, single-arm, interventional, phase IV study (HU-F-AIM) evaluating HU-resistance/intolerance. Validation of predictive biomarkers may facilitate identification of patients at risk of HU resistance who may benefit from alternative treatment options, possibly preventing ongoing phlebotomy during HU treatment, a frequent therapeutic choice in high-risk PV associated with early disease progression and increased thromboembolic complications. We propose an updated terminology that differentiates between true molecular resistance and clinical resistance, that may indicate the requirement for alternative therapeutic strategies.

Abstract Image

真性红细胞增多症患者对羟基脲治疗耐药性的预测:一项机器学习研究(PV-AIM)在前瞻性介入IV期试验(HU-F-AIM)中得到验证
真性红细胞增多症(PV)是一种骨髓增生性肿瘤,与血栓栓塞(TE)风险增加和血液学并发症相关。羟基脲(HU)是世界范围内最常用的一线细胞减少疗法;然而,对HU (HU- res)的耐药性在相当一部分患者中出现,导致发病率增加,需要替代治疗。该研究是PV- aim项目的一部分,采用机器学习技术对Optum®EHR数据库中包含82960名PV患者的真实世界证据(RWE)进行分析,以确定治疗前6-9个月内HU-RES的基线预测因素。该研究使用随机森林模型分析了1850名患者的数据,重点关注实验室参数和临床特征。关键预测指标包括红细胞分布宽度(RDW)和血红蛋白(HGB),其中与HU-RES相关性最强。发现RDW和HGB之间存在协同作用,从而实现TE风险分层。本研究提供了一个强有力的框架,可以利用现成的临床数据进行早期检测,促进及时干预。这些发现强调了个性化治疗方法在PV管理中的重要性,并强调了机器学习在提高预测准确性和临床结果方面的效用。基于PV-AIM的结果,我们启动了一项开放标签、前瞻性、单臂、介入性、IV期研究(HU-F-AIM),评估hu耐药/不耐受。预测性生物标志物的验证可能有助于识别有HU耐药风险的患者,这些患者可能受益于替代治疗方案,可能在HU治疗期间防止持续的静脉切开术,这是与早期疾病进展和血栓栓塞并发症增加相关的高风险PV的常用治疗选择。我们提出了一个更新的术语,区分真正的分子耐药和临床耐药,这可能表明需要替代治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Leukemia
Leukemia 医学-血液学
CiteScore
18.10
自引率
3.50%
发文量
270
审稿时长
3-6 weeks
期刊介绍: Title: Leukemia Journal Overview: Publishes high-quality, peer-reviewed research Covers all aspects of research and treatment of leukemia and allied diseases Includes studies of normal hemopoiesis due to comparative relevance Topics of Interest: Oncogenes Growth factors Stem cells Leukemia genomics Cell cycle Signal transduction Molecular targets for therapy And more Content Types: Original research articles Reviews Letters Correspondence Comments elaborating on significant advances and covering topical issues
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信