Catherine M. Bishop, K.S.N. Vikrant, R. Edwin García
{"title":"Ferroelectric grain boundary complexion transitions","authors":"Catherine M. Bishop, K.S.N. Vikrant, R. Edwin García","doi":"10.1016/j.actamat.2025.121043","DOIUrl":null,"url":null,"abstract":"By starting from equilibrium volumetric and interfacial properties of ferroelectric materials, a thermodynamically-consistent phase field framework incorporating polarization and space charge for polycrystalline ferroelectrics is developed. Building on Cahn’s critical point wetting variational analysis, a series of planar <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mo is=\"true\">[</mo><mn is=\"true\">0</mn><mspace width=\"0.16667em\" is=\"true\" /><mn is=\"true\">0</mn><mspace width=\"0.16667em\" is=\"true\" /><mn is=\"true\">1</mn><mo is=\"true\">]</mo></mrow></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.779ex\" role=\"img\" style=\"vertical-align: -0.812ex;\" viewbox=\"0 -846.5 2391.8 1196.3\" width=\"5.555ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMAIN-5B\"></use></g><g is=\"true\" transform=\"translate(278,0)\"><use xlink:href=\"#MJMAIN-30\"></use></g><g is=\"true\"></g><g is=\"true\" transform=\"translate(945,0)\"><use xlink:href=\"#MJMAIN-30\"></use></g><g is=\"true\"></g><g is=\"true\" transform=\"translate(1612,0)\"><use xlink:href=\"#MJMAIN-31\"></use></g><g is=\"true\" transform=\"translate(2113,0)\"><use xlink:href=\"#MJMAIN-5D\"></use></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mo is=\"true\">[</mo><mn is=\"true\">0</mn><mspace is=\"true\" width=\"0.16667em\"></mspace><mn is=\"true\">0</mn><mspace is=\"true\" width=\"0.16667em\"></mspace><mn is=\"true\">1</mn><mo is=\"true\">]</mo></mrow></math></span></span><script type=\"math/mml\"><math><mrow is=\"true\"><mo is=\"true\">[</mo><mn is=\"true\">0</mn><mspace width=\"0.16667em\" is=\"true\"></mspace><mn is=\"true\">0</mn><mspace width=\"0.16667em\" is=\"true\"></mspace><mn is=\"true\">1</mn><mo is=\"true\">]</mo></mrow></math></script></span> tilt grain boundaries in tetragonal ferroelectrics in the absence of point defects are investigated. We find that grain boundaries with (i) head-to-tail-like polarization configurations have built in E-fields and undergo order–disorder transformations with decreasing temperature or increasing misorientation and those with (ii) head-to-head-like polarization configurations are paraelectric with no E-field and become more structurally disordered with decreasing temperature or increasing misorientation. Results suggest that ordered and disordered grain boundary complexions can coexist in first order ferroelectrics at all temperatures below the Curie temperature, <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">T</mi></mrow><mrow is=\"true\"><mi is=\"true\">c</mi></mrow></msub></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.317ex\" role=\"img\" style=\"vertical-align: -0.582ex;\" viewbox=\"0 -747.2 991 997.6\" width=\"2.302ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-54\"></use></g></g><g is=\"true\" transform=\"translate(584,-150)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-63\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">T</mi></mrow><mrow is=\"true\"><mi is=\"true\">c</mi></mrow></msub></math></span></span><script type=\"math/mml\"><math><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">T</mi></mrow><mrow is=\"true\"><mi is=\"true\">c</mi></mrow></msub></math></script></span>. In contrast, in second order ferroelectrics, results suggest that only one complexion will be observed at temperatures just below <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">T</mi></mrow><mrow is=\"true\"><mi is=\"true\">c</mi></mrow></msub></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.317ex\" role=\"img\" style=\"vertical-align: -0.582ex;\" viewbox=\"0 -747.2 991 997.6\" width=\"2.302ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-54\"></use></g></g><g is=\"true\" transform=\"translate(584,-150)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-63\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">T</mi></mrow><mrow is=\"true\"><mi is=\"true\">c</mi></mrow></msub></math></span></span><script type=\"math/mml\"><math><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">T</mi></mrow><mrow is=\"true\"><mi is=\"true\">c</mi></mrow></msub></math></script></span> and, that on further cooling below a critical temperature, a second disordered complexion will develop for some grain boundaries, leading to abrupt changes in material properties.","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"140 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Materialia","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.actamat.2025.121043","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
By starting from equilibrium volumetric and interfacial properties of ferroelectric materials, a thermodynamically-consistent phase field framework incorporating polarization and space charge for polycrystalline ferroelectrics is developed. Building on Cahn’s critical point wetting variational analysis, a series of planar tilt grain boundaries in tetragonal ferroelectrics in the absence of point defects are investigated. We find that grain boundaries with (i) head-to-tail-like polarization configurations have built in E-fields and undergo order–disorder transformations with decreasing temperature or increasing misorientation and those with (ii) head-to-head-like polarization configurations are paraelectric with no E-field and become more structurally disordered with decreasing temperature or increasing misorientation. Results suggest that ordered and disordered grain boundary complexions can coexist in first order ferroelectrics at all temperatures below the Curie temperature, . In contrast, in second order ferroelectrics, results suggest that only one complexion will be observed at temperatures just below and, that on further cooling below a critical temperature, a second disordered complexion will develop for some grain boundaries, leading to abrupt changes in material properties.
期刊介绍:
Acta Materialia serves as a platform for publishing full-length, original papers and commissioned overviews that contribute to a profound understanding of the correlation between the processing, structure, and properties of inorganic materials. The journal seeks papers with high impact potential or those that significantly propel the field forward. The scope includes the atomic and molecular arrangements, chemical and electronic structures, and microstructure of materials, focusing on their mechanical or functional behavior across all length scales, including nanostructures.