Ferroelectric grain boundary complexion transitions

IF 8.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Catherine M. Bishop, K.S.N. Vikrant, R. Edwin García
{"title":"Ferroelectric grain boundary complexion transitions","authors":"Catherine M. Bishop, K.S.N. Vikrant, R. Edwin García","doi":"10.1016/j.actamat.2025.121043","DOIUrl":null,"url":null,"abstract":"By starting from equilibrium volumetric and interfacial properties of ferroelectric materials, a thermodynamically-consistent phase field framework incorporating polarization and space charge for polycrystalline ferroelectrics is developed. Building on Cahn’s critical point wetting variational analysis, a series of planar <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow is=\"true\"&gt;&lt;mo is=\"true\"&gt;[&lt;/mo&gt;&lt;mn is=\"true\"&gt;0&lt;/mn&gt;&lt;mspace width=\"0.16667em\" is=\"true\" /&gt;&lt;mn is=\"true\"&gt;0&lt;/mn&gt;&lt;mspace width=\"0.16667em\" is=\"true\" /&gt;&lt;mn is=\"true\"&gt;1&lt;/mn&gt;&lt;mo is=\"true\"&gt;]&lt;/mo&gt;&lt;/mrow&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.779ex\" role=\"img\" style=\"vertical-align: -0.812ex;\" viewbox=\"0 -846.5 2391.8 1196.3\" width=\"5.555ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMAIN-5B\"></use></g><g is=\"true\" transform=\"translate(278,0)\"><use xlink:href=\"#MJMAIN-30\"></use></g><g is=\"true\"></g><g is=\"true\" transform=\"translate(945,0)\"><use xlink:href=\"#MJMAIN-30\"></use></g><g is=\"true\"></g><g is=\"true\" transform=\"translate(1612,0)\"><use xlink:href=\"#MJMAIN-31\"></use></g><g is=\"true\" transform=\"translate(2113,0)\"><use xlink:href=\"#MJMAIN-5D\"></use></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mo is=\"true\">[</mo><mn is=\"true\">0</mn><mspace is=\"true\" width=\"0.16667em\"></mspace><mn is=\"true\">0</mn><mspace is=\"true\" width=\"0.16667em\"></mspace><mn is=\"true\">1</mn><mo is=\"true\">]</mo></mrow></math></span></span><script type=\"math/mml\"><math><mrow is=\"true\"><mo is=\"true\">[</mo><mn is=\"true\">0</mn><mspace width=\"0.16667em\" is=\"true\"></mspace><mn is=\"true\">0</mn><mspace width=\"0.16667em\" is=\"true\"></mspace><mn is=\"true\">1</mn><mo is=\"true\">]</mo></mrow></math></script></span> tilt grain boundaries in tetragonal ferroelectrics in the absence of point defects are investigated. We find that grain boundaries with (i) head-to-tail-like polarization configurations have built in E-fields and undergo order–disorder transformations with decreasing temperature or increasing misorientation and those with (ii) head-to-head-like polarization configurations are paraelectric with no E-field and become more structurally disordered with decreasing temperature or increasing misorientation. Results suggest that ordered and disordered grain boundary complexions can coexist in first order ferroelectrics at all temperatures below the Curie temperature, <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;msub is=\"true\"&gt;&lt;mrow is=\"true\"&gt;&lt;mi is=\"true\"&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow is=\"true\"&gt;&lt;mi is=\"true\"&gt;c&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.317ex\" role=\"img\" style=\"vertical-align: -0.582ex;\" viewbox=\"0 -747.2 991 997.6\" width=\"2.302ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-54\"></use></g></g><g is=\"true\" transform=\"translate(584,-150)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-63\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">T</mi></mrow><mrow is=\"true\"><mi is=\"true\">c</mi></mrow></msub></math></span></span><script type=\"math/mml\"><math><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">T</mi></mrow><mrow is=\"true\"><mi is=\"true\">c</mi></mrow></msub></math></script></span>. In contrast, in second order ferroelectrics, results suggest that only one complexion will be observed at temperatures just below <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;msub is=\"true\"&gt;&lt;mrow is=\"true\"&gt;&lt;mi is=\"true\"&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow is=\"true\"&gt;&lt;mi is=\"true\"&gt;c&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.317ex\" role=\"img\" style=\"vertical-align: -0.582ex;\" viewbox=\"0 -747.2 991 997.6\" width=\"2.302ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-54\"></use></g></g><g is=\"true\" transform=\"translate(584,-150)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-63\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">T</mi></mrow><mrow is=\"true\"><mi is=\"true\">c</mi></mrow></msub></math></span></span><script type=\"math/mml\"><math><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">T</mi></mrow><mrow is=\"true\"><mi is=\"true\">c</mi></mrow></msub></math></script></span> and, that on further cooling below a critical temperature, a second disordered complexion will develop for some grain boundaries, leading to abrupt changes in material properties.","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"140 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Materialia","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.actamat.2025.121043","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

By starting from equilibrium volumetric and interfacial properties of ferroelectric materials, a thermodynamically-consistent phase field framework incorporating polarization and space charge for polycrystalline ferroelectrics is developed. Building on Cahn’s critical point wetting variational analysis, a series of planar [001] tilt grain boundaries in tetragonal ferroelectrics in the absence of point defects are investigated. We find that grain boundaries with (i) head-to-tail-like polarization configurations have built in E-fields and undergo order–disorder transformations with decreasing temperature or increasing misorientation and those with (ii) head-to-head-like polarization configurations are paraelectric with no E-field and become more structurally disordered with decreasing temperature or increasing misorientation. Results suggest that ordered and disordered grain boundary complexions can coexist in first order ferroelectrics at all temperatures below the Curie temperature, Tc. In contrast, in second order ferroelectrics, results suggest that only one complexion will be observed at temperatures just below Tc and, that on further cooling below a critical temperature, a second disordered complexion will develop for some grain boundaries, leading to abrupt changes in material properties.

Abstract Image

铁电晶界复合转变
从铁电材料的平衡体积和界面性质出发,建立了包含极化和空间电荷的多晶铁电材料的热力学一致相场框架。在Cahn临界点润湿变分分析的基础上,研究了四方铁电体在无点缺陷情况下的一系列平面[001][001]倾斜晶界。我们发现,具有(i)头尾状极化结构的晶界在电场中建立,并随着温度的降低或错取向的增加而发生有序-无序转变;具有(ii)头尾状极化结构的晶界在没有电场的情况下是准电的,并且随着温度的降低或错取向的增加而变得更加无序。结果表明,在居里温度(TcTc)以下的一阶铁电体中,有序晶界和无序晶界可以共存。相反,在二阶铁电体中,结果表明,在略低于TcTc的温度下,只会观察到一种色相,当进一步冷却到临界温度以下时,在某些晶界上会出现第二种无序色相,导致材料性能的突然变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Materialia
Acta Materialia 工程技术-材料科学:综合
CiteScore
16.10
自引率
8.50%
发文量
801
审稿时长
53 days
期刊介绍: Acta Materialia serves as a platform for publishing full-length, original papers and commissioned overviews that contribute to a profound understanding of the correlation between the processing, structure, and properties of inorganic materials. The journal seeks papers with high impact potential or those that significantly propel the field forward. The scope includes the atomic and molecular arrangements, chemical and electronic structures, and microstructure of materials, focusing on their mechanical or functional behavior across all length scales, including nanostructures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信