Alcohol Dehydrogenase 4-Mediated Retinol Metabolism Inhibits Hepatocellular Carcinoma Progression Through Inhibiting the Wnt/β-Catenin Pathway

Jiaying Li, Mingshu Gao, Yanan Zhang, Dawen Liao, Feng Zhou, Zhaohui Zhang, Lele Ji, Yilin Zhao, Qichao Huang, Qian Bi, Nan Wang
{"title":"Alcohol Dehydrogenase 4-Mediated Retinol Metabolism Inhibits Hepatocellular Carcinoma Progression Through Inhibiting the Wnt/β-Catenin Pathway","authors":"Jiaying Li,&nbsp;Mingshu Gao,&nbsp;Yanan Zhang,&nbsp;Dawen Liao,&nbsp;Feng Zhou,&nbsp;Zhaohui Zhang,&nbsp;Lele Ji,&nbsp;Yilin Zhao,&nbsp;Qichao Huang,&nbsp;Qian Bi,&nbsp;Nan Wang","doi":"10.1002/mog2.70021","DOIUrl":null,"url":null,"abstract":"<p>Hepatocellular carcinoma (HCC) ranks third in global cancer-related mortality, with limited therapies for advanced stages. Retinol, the alcohol form of vitamin A, has long been associated with liver diseases. Plasma retinol levels have been inversely correlated with the risk and poor prognosis of HCC. In this study, transcriptome data analysis identified retinol metabolism as the seventh KEGG-dysregulated pathway in cirrhosis tissue, ascending to the top position in HCC tissue compared to normal tissue. Specifically, a consistent downregulation of ADH4 (alcohol dehydrogenase 4), the retinol dehydrogenase among human ADHs, was observed, which correlated with poor prognosis in HCC patients. In vivo experiments demonstrated that silencing ADH4 enhances liver fibrosis and the progression of HCC. Mechanistically, ADH4 elevated intracellular levels of RA (retinoic acid), a biologically active derivative of retinol. RA-activated retinoid receptors RARs/RXRs, leading to inhibition of the downstream Wnt/β-catenin pathway and thereby hindering HCC progression. In contrast, the knockdown of ADH4 in hepatocytes triggers apoptosis. Notably, additional results demonstrated that the combined treatment of RA and cisplatin achieved synergistic antitumor effects in a mouse HCC model. In summary, our research elucidates that ADH4-mediated RA production suppresses HCC growth, providing a theoretical foundation for HCC treatment.</p>","PeriodicalId":100902,"journal":{"name":"MedComm – Oncology","volume":"4 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mog2.70021","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MedComm – Oncology","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mog2.70021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Hepatocellular carcinoma (HCC) ranks third in global cancer-related mortality, with limited therapies for advanced stages. Retinol, the alcohol form of vitamin A, has long been associated with liver diseases. Plasma retinol levels have been inversely correlated with the risk and poor prognosis of HCC. In this study, transcriptome data analysis identified retinol metabolism as the seventh KEGG-dysregulated pathway in cirrhosis tissue, ascending to the top position in HCC tissue compared to normal tissue. Specifically, a consistent downregulation of ADH4 (alcohol dehydrogenase 4), the retinol dehydrogenase among human ADHs, was observed, which correlated with poor prognosis in HCC patients. In vivo experiments demonstrated that silencing ADH4 enhances liver fibrosis and the progression of HCC. Mechanistically, ADH4 elevated intracellular levels of RA (retinoic acid), a biologically active derivative of retinol. RA-activated retinoid receptors RARs/RXRs, leading to inhibition of the downstream Wnt/β-catenin pathway and thereby hindering HCC progression. In contrast, the knockdown of ADH4 in hepatocytes triggers apoptosis. Notably, additional results demonstrated that the combined treatment of RA and cisplatin achieved synergistic antitumor effects in a mouse HCC model. In summary, our research elucidates that ADH4-mediated RA production suppresses HCC growth, providing a theoretical foundation for HCC treatment.

Abstract Image

醇脱氢酶4介导的视黄醇代谢通过抑制Wnt/β-Catenin通路抑制肝细胞癌进展
肝细胞癌(HCC)在全球癌症相关死亡率中排名第三,晚期治疗方法有限。视黄醇是维生素A的酒精形式,长期以来一直与肝脏疾病有关。血浆视黄醇水平与HCC的风险和不良预后呈负相关。在本研究中,转录组数据分析发现视黄醇代谢是肝硬化组织中第七个kegg失调通路,与正常组织相比,在HCC组织中上升到最高位置。具体来说,在人类ADHs中观察到持续下调ADH4(醇脱氢酶4),视黄醇脱氢酶,这与HCC患者预后不良相关。体内实验表明,沉默ADH4可促进肝纤维化和HCC的进展。从机制上讲,ADH4提高了细胞内RA(视黄酸)的水平,视黄酸是视黄醇的一种生物活性衍生物。ra激活类视黄醇受体RARs/RXRs,抑制下游Wnt/β-catenin通路,从而阻碍HCC进展。相反,肝细胞中ADH4的下调会引发细胞凋亡。值得注意的是,其他结果表明,RA和顺铂联合治疗在小鼠HCC模型中具有协同抗肿瘤作用。综上所述,我们的研究阐明了adh4介导的RA产生抑制HCC的生长,为HCC的治疗提供了理论基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信