Reliability of Matrix-Assisted Laser Desorption-Ionisation Time-of-Flight Mass Spectrometry as a Method for Drug-Resistant Tuberculosis Gene Identification
Kaishun Zhao, Wei Wei, Lijia Yang, Wei Chen, Haiying Liang, Ye Jin, Yameng Sun, Jun Xu, Yanfang Yu
{"title":"Reliability of Matrix-Assisted Laser Desorption-Ionisation Time-of-Flight Mass Spectrometry as a Method for Drug-Resistant Tuberculosis Gene Identification","authors":"Kaishun Zhao, Wei Wei, Lijia Yang, Wei Chen, Haiying Liang, Ye Jin, Yameng Sun, Jun Xu, Yanfang Yu","doi":"10.1111/1440-1681.70038","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Instances of drug-resistant tuberculosis (TB), particularly multidrug- and extensive drug-resistant TB, are escalating worldwide; therefore, there is an urgent need to explore suitable treatment strategies. This study assessed the precision of matrix-assisted laser desorption-ionisation time-of-flight mass spectrometry (MALDI-TOF MS) in detecting drug-resistant TB. We developed a multiplex MALDI-TOF MS detection assay that concurrently identifies 51 gene mutations for six commonly used medications: rifampicin (RFP), isoniazid (INH), levofloxacin (LVX), moxifloxacin (MOX), capreomycin (CPM) and amikacin (AMK). Subsequently, we evaluated the accuracy of the system by testing clinical sputum samples with known (<i>n</i> = 45) and unknown (<i>n</i> = 254) minimum inhibitory concentrations (MICs), using Sanger-sequenced genes as references. The detection system exhibited a minimum sensitivity of 88.00% and a specificity of 95.24% for the 45 known isolates. Similarly, for the 254 unknown samples, the detection system demonstrated sensitivity and specificity for mutations associated with each medication as follows: RFP—sensitivity: 98.97%, specificity: 99.36%; INH—sensitivity: 97.80%, specificity: 100.00%; LVX and MOX—sensitivity: 97.14%, specificity: 100.00%; AMK and CPM—sensitivity: 100.00%, specificity: 100.00%. The unknown samples also displayed favourable sensitivity and specificity values in the MIC validation as follows: RFP—sensitivity: 92.39%, specificity: 92.59%; INH—sensitivity: 75.21%, specificity: 99.27%; LVX—sensitivity: 75.28%, specificity: 99.39%; MOX—sensitivity: 73.24%, specificity: 91.26%; AMK—sensitivity: 94.87%, specificity: 96.74%; CPM—sensitivity: 89.47%, specificity: 95.83%. Meanwhile, our study allows for the identification of the <i>Mycobacterium tuberculosis</i> complex (MTBC). The MALDI-TOF MS exhibited remarkable accuracy in the detection of drug-resistant TB, making it a potential alternative approach for clinical TB diagnosis.</p>\n </div>","PeriodicalId":50684,"journal":{"name":"Clinical and Experimental Pharmacology and Physiology","volume":"52 6","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical and Experimental Pharmacology and Physiology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1440-1681.70038","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Instances of drug-resistant tuberculosis (TB), particularly multidrug- and extensive drug-resistant TB, are escalating worldwide; therefore, there is an urgent need to explore suitable treatment strategies. This study assessed the precision of matrix-assisted laser desorption-ionisation time-of-flight mass spectrometry (MALDI-TOF MS) in detecting drug-resistant TB. We developed a multiplex MALDI-TOF MS detection assay that concurrently identifies 51 gene mutations for six commonly used medications: rifampicin (RFP), isoniazid (INH), levofloxacin (LVX), moxifloxacin (MOX), capreomycin (CPM) and amikacin (AMK). Subsequently, we evaluated the accuracy of the system by testing clinical sputum samples with known (n = 45) and unknown (n = 254) minimum inhibitory concentrations (MICs), using Sanger-sequenced genes as references. The detection system exhibited a minimum sensitivity of 88.00% and a specificity of 95.24% for the 45 known isolates. Similarly, for the 254 unknown samples, the detection system demonstrated sensitivity and specificity for mutations associated with each medication as follows: RFP—sensitivity: 98.97%, specificity: 99.36%; INH—sensitivity: 97.80%, specificity: 100.00%; LVX and MOX—sensitivity: 97.14%, specificity: 100.00%; AMK and CPM—sensitivity: 100.00%, specificity: 100.00%. The unknown samples also displayed favourable sensitivity and specificity values in the MIC validation as follows: RFP—sensitivity: 92.39%, specificity: 92.59%; INH—sensitivity: 75.21%, specificity: 99.27%; LVX—sensitivity: 75.28%, specificity: 99.39%; MOX—sensitivity: 73.24%, specificity: 91.26%; AMK—sensitivity: 94.87%, specificity: 96.74%; CPM—sensitivity: 89.47%, specificity: 95.83%. Meanwhile, our study allows for the identification of the Mycobacterium tuberculosis complex (MTBC). The MALDI-TOF MS exhibited remarkable accuracy in the detection of drug-resistant TB, making it a potential alternative approach for clinical TB diagnosis.
期刊介绍:
Clinical and Experimental Pharmacology and Physiology is an international journal founded in 1974 by Mike Rand, Austin Doyle, John Coghlan and Paul Korner. Our focus is new frontiers in physiology and pharmacology, emphasizing the translation of basic research to clinical practice. We publish original articles, invited reviews and our exciting, cutting-edge Frontiers-in-Research series’.