Free subsets in internally approachable models

IF 0.3 4区 数学 Q1 Arts and Humanities
P. D. Welch
{"title":"Free subsets in internally approachable models","authors":"P. D. Welch","doi":"10.1007/s00153-024-00947-0","DOIUrl":null,"url":null,"abstract":"<div><p>We consider a question of Pereira as to whether the characteristic function of an internally approachable model can lead to free subsets for functions of the model. Pereira isolated the pertinent <i>Approachable Free Subsets Property</i> (AFSP) in his work on the <span>\\({\\text {pcf}}\\)</span>-conjecture. A recent related property is the <i>Approachable Bounded Subset Property</i> (ABSP) of Ben-Neria and Adolf, and we here directly show it requires modest large cardinals to establish:</p><p><b>Theorem</b> <i>If ABSP</i> holds for an ascending sequence <span>\\( \\langle \\aleph _{n_{m}} \\rangle _{m}\\)</span> <span>\\(( n_{m} \\in \\omega )\\)</span> then there is an inner model with measurables <span>\\(\\kappa &lt; \\aleph _{\\omega }\\)</span> of arbitrarily large Mitchell order below <span>\\(\\aleph _{\\omega }\\)</span>, that is: <span>\\(\\sup \\left\\{ \\alpha \\mid {\\exists }\\kappa &lt; \\aleph _{\\omega } o ( \\kappa ) \\ge \\alpha \\right\\} = \\aleph _{\\omega }\\)</span>. A result of Adolf and Ben Neria then shows that this conclusion is in fact the exact consistency strength of ABSP for such an ascending sequence. Their result went via the consistency of the non-existence of continuous tree-like scales; the result of this paper is direct and avoids the use of PCF scales.</p></div>","PeriodicalId":48853,"journal":{"name":"Archive for Mathematical Logic","volume":"64 3-4","pages":"435 - 443"},"PeriodicalIF":0.3000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00153-024-00947-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for Mathematical Logic","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00153-024-00947-0","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 0

Abstract

We consider a question of Pereira as to whether the characteristic function of an internally approachable model can lead to free subsets for functions of the model. Pereira isolated the pertinent Approachable Free Subsets Property (AFSP) in his work on the \({\text {pcf}}\)-conjecture. A recent related property is the Approachable Bounded Subset Property (ABSP) of Ben-Neria and Adolf, and we here directly show it requires modest large cardinals to establish:

Theorem If ABSP holds for an ascending sequence \( \langle \aleph _{n_{m}} \rangle _{m}\) \(( n_{m} \in \omega )\) then there is an inner model with measurables \(\kappa < \aleph _{\omega }\) of arbitrarily large Mitchell order below \(\aleph _{\omega }\), that is: \(\sup \left\{ \alpha \mid {\exists }\kappa < \aleph _{\omega } o ( \kappa ) \ge \alpha \right\} = \aleph _{\omega }\). A result of Adolf and Ben Neria then shows that this conclusion is in fact the exact consistency strength of ABSP for such an ascending sequence. Their result went via the consistency of the non-existence of continuous tree-like scales; the result of this paper is direct and avoids the use of PCF scales.

内部可接近模型中的自由子集
我们考虑一个关于内部可接近模型的特征函数是否能导致该模型的函数的自由子集的Pereira问题。Pereira在他关于\({\text {pcf}}\) -猜想的工作中分离出了相关的可接近自由子集属性(AFSP)。最近的一个相关性质是Ben-Neria和Adolf的可接近有界子集性质(ABSP),我们在这里直接证明了它需要适度的大的cardinals来建立:定理如果ABSP对升序\( \langle \aleph _{n_{m}} \rangle _{m}\)\(( n_{m} \in \omega )\)成立,那么在\(\aleph _{\omega }\)以下存在一个具有任意大米切尔阶的可测量值\(\kappa < \aleph _{\omega }\)的内部模型,即:\(\sup \left\{ \alpha \mid {\exists }\kappa < \aleph _{\omega } o ( \kappa ) \ge \alpha \right\} = \aleph _{\omega }\)。然后,Adolf和Ben Neria的结果表明,这一结论实际上正是ABSP对于这样一个升序的一致性强度。他们的结果是通过不存在连续的树状尺度的一致性;本文的结果是直接的,避免了PCF尺度的使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Archive for Mathematical Logic
Archive for Mathematical Logic MATHEMATICS-LOGIC
CiteScore
0.80
自引率
0.00%
发文量
45
审稿时长
6-12 weeks
期刊介绍: The journal publishes research papers and occasionally surveys or expositions on mathematical logic. Contributions are also welcomed from other related areas, such as theoretical computer science or philosophy, as long as the methods of mathematical logic play a significant role. The journal therefore addresses logicians and mathematicians, computer scientists, and philosophers who are interested in the applications of mathematical logic in their own field, as well as its interactions with other areas of research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信