Synchronization of WPAA-Solution of Clifford-Valued Neural Network with Multiple Time-Varying Delays and Impulse Effects on Hybrid Domains

IF 1.2 4区 数学 Q2 MATHEMATICS, APPLIED
Divya Agrawal, Syed Abbas
{"title":"Synchronization of WPAA-Solution of Clifford-Valued Neural Network with Multiple Time-Varying Delays and Impulse Effects on Hybrid Domains","authors":"Divya Agrawal,&nbsp;Syed Abbas","doi":"10.1007/s10440-025-00729-7","DOIUrl":null,"url":null,"abstract":"<div><p>This paper addresses a class of Clifford-valued shunting inhibitory cellular neural networks on time scales. In this paper, we study the weighted pseudo almost automorphic (<i>WPAA</i>) solutions for Clifford-valued network models by taking into account time-varying delays and impulsive effects, resulting in a novel work. A key challenge in this context is the non-commutativity of Clifford numbers, which complicates the analysis. By using the non-decomposition and Banach fixed point, we prove the existence of a <i>WPAA</i> solution, and by using the Lyapunov function and feedback function, we explore the exponential synchronization for this model. The presented results significantly extend and complement existing findings in the field. In the end, the paper provides examples that demonstrate the usefulness of our analytical findings.</p></div>","PeriodicalId":53132,"journal":{"name":"Acta Applicandae Mathematicae","volume":"197 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Applicandae Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10440-025-00729-7","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This paper addresses a class of Clifford-valued shunting inhibitory cellular neural networks on time scales. In this paper, we study the weighted pseudo almost automorphic (WPAA) solutions for Clifford-valued network models by taking into account time-varying delays and impulsive effects, resulting in a novel work. A key challenge in this context is the non-commutativity of Clifford numbers, which complicates the analysis. By using the non-decomposition and Banach fixed point, we prove the existence of a WPAA solution, and by using the Lyapunov function and feedback function, we explore the exponential synchronization for this model. The presented results significantly extend and complement existing findings in the field. In the end, the paper provides examples that demonstrate the usefulness of our analytical findings.

混合域上具有多时变延迟和脉冲效应的克里福德值神经网络的 WPAA 解的同步化
本文探讨了一类时间尺度上的克利福德值分流抑制细胞神经网络。在本文中,我们通过考虑时变延迟和脉冲效应,研究了克里福值网络模型的加权伪近自动形(WPAA)解,从而完成了一项新工作。这方面的一个关键挑战是克利福德数的非交换性,这使得分析变得复杂。通过使用非分解和巴拿赫定点,我们证明了 WPAA 解的存在;通过使用 Lyapunov 函数和反馈函数,我们探索了该模型的指数同步。本文提出的结果极大地扩展和补充了该领域的现有研究成果。最后,本文提供了一些实例,证明了我们的分析结果的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Applicandae Mathematicae
Acta Applicandae Mathematicae 数学-应用数学
CiteScore
2.80
自引率
6.20%
发文量
77
审稿时长
16.2 months
期刊介绍: Acta Applicandae Mathematicae is devoted to the art and techniques of applying mathematics and the development of new, applicable mathematical methods. Covering a large spectrum from modeling to qualitative analysis and computational methods, Acta Applicandae Mathematicae contains papers on different aspects of the relationship between theory and applications, ranging from descriptive papers on actual applications meeting contemporary mathematical standards to proofs of new and deep theorems in applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信