Infinite combinatorics revisited in the absence of Axiom of choice

IF 0.3 4区 数学 Q1 Arts and Humanities
Tamás Csernák, Lajos Soukup
{"title":"Infinite combinatorics revisited in the absence of Axiom of choice","authors":"Tamás Csernák,&nbsp;Lajos Soukup","doi":"10.1007/s00153-024-00946-1","DOIUrl":null,"url":null,"abstract":"<div><p>We investigate whether classical combinatorial theorems are provable in ZF. Some statements are not provable in ZF, but they are equivalent within ZF. For example, the following statements (i)–(iii) are equivalent: </p><ol>\n <li>\n <span>(i)</span>\n \n <p><span>\\(cf({\\omega }_1)={\\omega }_1\\)</span>,</p>\n \n </li>\n <li>\n <span>(ii)</span>\n \n <p><span>\\({\\omega }_1\\rightarrow ({\\omega }_1,{\\omega }+1)^2\\)</span>,</p>\n \n </li>\n <li>\n <span>(iii)</span>\n \n <p>any family <span>\\(\\mathcal {A}\\subset [{On}]^{&lt;{\\omega }}\\)</span> of size <span>\\({\\omega }_1\\)</span> contains a <span>\\(\\Delta \\)</span>-system of size <span>\\({\\omega }_1\\)</span>.</p>\n \n </li>\n </ol><p> Some classical results cannot be proven in ZF alone; however, we can establish weaker versions of these statements within the framework of ZF, such as </p><ol>\n <li>\n <span>(1)</span>\n \n <p><span>\\({{\\omega }_2}\\rightarrow ({\\omega }_1,{\\omega }+1)\\)</span>,</p>\n \n </li>\n <li>\n <span>(2)</span>\n \n <p>any family <span>\\(\\mathcal {A}\\subset [{On}]^{&lt;{\\omega }}\\)</span> of size <span>\\({\\omega }_2\\)</span> contains a <span>\\(\\Delta \\)</span>-system of size <span>\\({\\omega }_1\\)</span>.</p>\n \n </li>\n </ol><p> Some statements can be proven in ZF using purely combinatorial arguments, such as: </p><ol>\n <li>\n <span>(3)</span>\n \n <p>given a set mapping <span>\\(F:{\\omega }_1\\rightarrow {[{\\omega }_1]}^{&lt;{\\omega }}\\)</span>, the set <span>\\({\\omega }_1\\)</span> has a partition into <span>\\({\\omega }\\)</span>-many <i>F</i>-free sets.</p>\n \n </li>\n </ol><p> Other statements can be proven in ZF by employing certain methods of absoluteness, for example: </p><ol>\n <li>\n <span>(4)</span>\n \n <p>given a set mapping <span>\\(F:{\\omega }_1\\rightarrow {[{\\omega }_1]}^{&lt;{\\omega }}\\)</span>, there is an <i>F</i>-free set of size <span>\\({\\omega }_1\\)</span>,</p>\n \n </li>\n <li>\n <span>(5)</span>\n \n <p>for each <span>\\(n\\in {\\omega }\\)</span>, every family <span>\\(\\mathcal {A}\\subset {[{\\omega }_1]}^{{\\omega }}\\)</span> with <span>\\(|A\\cap B|\\le n\\)</span> for <span>\\(\\{A,B\\}\\in {[\\mathcal {A}]}^{2}\\)</span> has property <i>B</i>.</p>\n \n </li>\n </ol><p> In contrast to statement (5), we show that the following ZFC theorem of Komjáth is not provable from ZF + <span>\\(cf({\\omega }_1)={\\omega }_1\\)</span>: </p><dl><dt><dfn>(6<span>\\( ^*\\)</span>):</dfn></dt><dd>\n <p>every family <span>\\(\\mathcal {A}\\subset {[{\\omega }_1]}^{{\\omega }}\\)</span> with <span>\\(|A\\cap B|\\le 1\\)</span> for <span>\\(\\{A,B\\}\\in {[\\mathcal {A}]}^{2}\\)</span> is <i>essentially disjoint</i>.</p>\n </dd></dl><p> A function <i>f</i> is a <i>uniform denumeration on</i> <span>\\({\\omega }_1\\)</span> iff <span>\\({\\text {dom}}(f)={\\omega }_1\\)</span>, and for every <span>\\(1\\le {\\alpha }&lt;{\\omega }_1\\)</span>, <span>\\(f({\\alpha })\\)</span> is a function from <span>\\({\\omega }\\)</span> onto <span>\\({\\alpha }\\)</span>. It is easy to see that the existence of a uniform denumeration of <span>\\({\\omega }_1\\)</span> implies <span>\\(cf({\\omega }_1)={\\omega }_1\\)</span>. We prove that the failure of the reverse implication is equiconsistent with the existence of an inaccessible cardinal.</p></div>","PeriodicalId":48853,"journal":{"name":"Archive for Mathematical Logic","volume":"64 3-4","pages":"473 - 491"},"PeriodicalIF":0.3000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00153-024-00946-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for Mathematical Logic","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00153-024-00946-1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate whether classical combinatorial theorems are provable in ZF. Some statements are not provable in ZF, but they are equivalent within ZF. For example, the following statements (i)–(iii) are equivalent:

  1. (i)

    \(cf({\omega }_1)={\omega }_1\),

  2. (ii)

    \({\omega }_1\rightarrow ({\omega }_1,{\omega }+1)^2\),

  3. (iii)

    any family \(\mathcal {A}\subset [{On}]^{<{\omega }}\) of size \({\omega }_1\) contains a \(\Delta \)-system of size \({\omega }_1\).

Some classical results cannot be proven in ZF alone; however, we can establish weaker versions of these statements within the framework of ZF, such as

  1. (1)

    \({{\omega }_2}\rightarrow ({\omega }_1,{\omega }+1)\),

  2. (2)

    any family \(\mathcal {A}\subset [{On}]^{<{\omega }}\) of size \({\omega }_2\) contains a \(\Delta \)-system of size \({\omega }_1\).

Some statements can be proven in ZF using purely combinatorial arguments, such as:

  1. (3)

    given a set mapping \(F:{\omega }_1\rightarrow {[{\omega }_1]}^{<{\omega }}\), the set \({\omega }_1\) has a partition into \({\omega }\)-many F-free sets.

Other statements can be proven in ZF by employing certain methods of absoluteness, for example:

  1. (4)

    given a set mapping \(F:{\omega }_1\rightarrow {[{\omega }_1]}^{<{\omega }}\), there is an F-free set of size \({\omega }_1\),

  2. (5)

    for each \(n\in {\omega }\), every family \(\mathcal {A}\subset {[{\omega }_1]}^{{\omega }}\) with \(|A\cap B|\le n\) for \(\{A,B\}\in {[\mathcal {A}]}^{2}\) has property B.

In contrast to statement (5), we show that the following ZFC theorem of Komjáth is not provable from ZF + \(cf({\omega }_1)={\omega }_1\):

(6\( ^*\)):

every family \(\mathcal {A}\subset {[{\omega }_1]}^{{\omega }}\) with \(|A\cap B|\le 1\) for \(\{A,B\}\in {[\mathcal {A}]}^{2}\) is essentially disjoint.

A function f is a uniform denumeration on \({\omega }_1\) iff \({\text {dom}}(f)={\omega }_1\), and for every \(1\le {\alpha }<{\omega }_1\), \(f({\alpha })\) is a function from \({\omega }\) onto \({\alpha }\). It is easy to see that the existence of a uniform denumeration of \({\omega }_1\) implies \(cf({\omega }_1)={\omega }_1\). We prove that the failure of the reverse implication is equiconsistent with the existence of an inaccessible cardinal.

在没有选择公理的情况下重新审视无限组合学
研究经典组合定理在ZF中是否可证明。有些命题在ZF中是不可证明的,但它们在ZF中是等价的。例如,下列语句(i) - (iii)是等价的:(i) \(cf({\omega }_1)={\omega }_1\), (ii) \({\omega }_1\rightarrow ({\omega }_1,{\omega }+1)^2\), (iii)任何大小为\({\omega }_1\)的族\(\mathcal {A}\subset [{On}]^{<{\omega }}\)包含大小为\({\omega }_1\)的\(\Delta \) -系统。有些经典结果不能单独用ZF证明;然而,我们可以在ZF框架内建立这些语句的弱版本,例如(1)\({{\omega }_2}\rightarrow ({\omega }_1,{\omega }+1)\),(2)任何大小为\({\omega }_2\)的族\(\mathcal {A}\subset [{On}]^{<{\omega }}\)包含大小为\({\omega }_1\)的\(\Delta \) -系统。有些命题可以用纯组合参数在ZF中证明,例如:(3)给定一个集合映射\(F:{\omega }_1\rightarrow {[{\omega }_1]}^{<{\omega }}\),集合\({\omega }_1\)被划分为\({\omega }\) -多个与f无关的集合。在ZF中可以用某些绝对性方法证明其他陈述,例如:(4)给定一个集映射\(F:{\omega }_1\rightarrow {[{\omega }_1]}^{<{\omega }}\),存在一个大小为\({\omega }_1\)的无f集,(5)对于每个\(n\in {\omega }\),每个族\(\mathcal {A}\subset {[{\omega }_1]}^{{\omega }}\)对于\(\{A,B\}\in {[\mathcal {A}]}^{2}\)具有\(|A\cap B|\le n\)都具有属性b。与语句(5)相反,我们证明了以下的ZFC定理Komjáth不能由ZF + \(cf({\omega }_1)={\omega }_1\)证明:(6 \( ^*\)):对于\(\{A,B\}\in {[\mathcal {A}]}^{2}\),每个族\(\mathcal {A}\subset {[{\omega }_1]}^{{\omega }}\)与\(|A\cap B|\le 1\)本质上是不相交的。函数f是\({\omega }_1\)和\({\text {dom}}(f)={\omega }_1\)上的统一编号,对于每个\(1\le {\alpha }<{\omega }_1\), \(f({\alpha })\)是从\({\omega }\)到\({\alpha }\)的函数。很容易看出,\({\omega }_1\)的统一计数的存在意味着\(cf({\omega }_1)={\omega }_1\)。我们证明了逆蕴涵的失败与不可达基数的存在是等价的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Archive for Mathematical Logic
Archive for Mathematical Logic MATHEMATICS-LOGIC
CiteScore
0.80
自引率
0.00%
发文量
45
审稿时长
6-12 weeks
期刊介绍: The journal publishes research papers and occasionally surveys or expositions on mathematical logic. Contributions are also welcomed from other related areas, such as theoretical computer science or philosophy, as long as the methods of mathematical logic play a significant role. The journal therefore addresses logicians and mathematicians, computer scientists, and philosophers who are interested in the applications of mathematical logic in their own field, as well as its interactions with other areas of research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信